
Model-Based Calibration Toolbox 3
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model-Based Calibration Toolbox Reference

© COPYRIGHT 2005–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2005 Online only New for Version 3.0 (Release 14SP3+)
September 2006 Online only Version 3.1 (Release 2006b)
March 2007 Online only Version 3.2 (Release 2007a)

Contents

Commands – By Category

1
Functions . 1-2

Handling Data . 1-3
mbcmodel.data — Properties . 1-3
mbcmodel.data — Methods . 1-4

Handling Projects . 1-5
mbcmodel.project — Properties . 1-5
mbcmodel.project — Methods . 1-5

Handling Test Plans . 1-6
mbcmodel.testplan — Properties . 1-6
mbcmodel.testplan — Methods . 1-6

Handling Models . 1-7
Hierarchical Models . 1-7
Local Models . 1-8
Response Models . 1-10
Models . 1-11
Model Parameters . 1-14
Model Properties . 1-15

Commands — Alphabetical List

2

v

vi Contents

1

Commands – By Category

Functions (p. 1-2) Functions to construct data, model
and project objects; load projects;
and find data file types.

Handling Data (p. 1-3) Properties and methods for data
objects

Handling Projects (p. 1-5) Properties and methods for project
objects

Handling Test Plans (p. 1-6) Properties and methods for test plan
objects

Handling Models (p. 1-7) Properties and methods for model
objects

1 Commands – By Category

Functions
CreateData Create data object

CreateModel Create new model

CreateProject Create project object

DataFileTypes Data file types

LoadProject Load a mbcmodel.project

1-2

Handling Data

Handling Data

mbcmodel.data — Properties (p. 1-3) Examine data objects

mbcmodel.data — Methods (p. 1-4) Work with data objects

mbcmodel.data — Properties

Filters Structure array holding user-defined
filters

IsBeingEdited Boolean signaling if data or model
is being edited

IsEditable Boolean signaling whether data is
editable

Name Name of project, data, test plan, or
model

NumberOfRecords Total number of records in data
object

NumberOfTests Total number of tests being used in
model

Owner Object from which data was received

RecordsPerTest Number of records in each test

SignalNames Names of signals held by data

SignalUnits Names of units in data

TestFilters Structure array holding user-defined
test filters

UserVariables Structure array holding user-defined
variables

1-3

1 Commands – By Category

mbcmodel.data — Methods

AddFilter Add user-defined filter to data set

AddTestFilter Add user-defined test filter to data
set

AddVariable Add user-defined variable to data set

Append Append data to data set

BeginEdit Begin editing session on data object

CommitEdit Update temporary changes in data

DefineNumberOfRecordsPerTest Define exact number of records per
test

DefineTestGroups Define rule-based test groupings

ExportToMBCDataStructure Export data to MBC data structure

ImportFromFile Load data from file

ImportFromMBCDataStructure Load data from MBC data structure

ModifyFilter Modify user-defined filter in data set

ModifyTestFilter Modify user-defined test filter in
data set

ModifyVariable Modify user-defined variable in data
set

RemoveFilter Remove user-defined filter from data
set

RemoveTestFilter Remove user-defined test filter from
data set

RemoveVariable Remove user-defined variable from
data set

RollbackEdit Undo most recent changes to data

Value Double data from data object

1-4

Handling Projects

Handling Projects

mbcmodel.project — Properties
(p. 1-5)

Examine project objects

mbcmodel.project — Methods (p. 1-5) Work with project objects

mbcmodel.project — Properties

Data Array of data objects in project or
test plan

Filename Full path to project file

Modified Boolean signaling whether project
has been modified

Name Name of project, data, test plan, or
model

TestPlans Array of test plan objects in project

mbcmodel.project — Methods

CopyData Create data object from copy of
existing object

CreateData Create data object

CreateTestplan Create new test plan

Load Load existing project file

New Create new project file

Remove Remove project, test plan, or model

RemoveData Remove data from project

Save Save project to currently selected
filename

SaveAs Save project to new file

1-5

1 Commands – By Category

Handling Test Plans

mbcmodel.testplan — Properties
(p. 1-6)

Examine test plan objects

mbcmodel.testplan — Methods
(p. 1-6)

Work with test plan objects

mbcmodel.testplan — Properties

Data Array of data objects in project or
test plan

InputSignalNames Names of signals in data that are
being modeled

InputsPerLevel Number of inputs at each level in
model

Levels Number of levels in hierarchical
model

Name Name of project, data, test plan, or
model

Responses Array of available responses for test
plan

mbcmodel.testplan — Methods

AttachData Attach data from project to test plan

CreateResponse Create new response model for test
plan

DetachData Detach data from test plan

GetDesignMatrix Design points from test plan

InputSetupDialog Open Input Setup dialog box to edit
inputs

Remove Remove project, test plan, or model

1-6

Handling Models

Handling Models

Hierarchical Models (p. 1-7) Working with hierarchical models

Local Models (p. 1-8) Working with local models

Response Models (p. 1-10) Working with response models

Models (p. 1-11) Working with model objects

Model Parameters (p. 1-14) Examine model parameter objects

Model Properties (p. 1-15) Set model properties

Hierarchical Models

mbcmodel.hierarchicalresponse — Properties

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response

LocalResponses Array of local responses for response

Name Name of project, data, test plan, or
model

NumberOfTests Total number of tests being used in
model

ResponseSignalName Name of signal or response feature
being modeled

mbcmodel.hierarchicalresponse — Methods

AlternativeModelStatistics Summary statistics for alternative
models

CreateAlternativeModels Create alternative models from
model template

DoubleInputData Data being used as input to model

1-7

1 Commands – By Category

DoubleResponseData Data being used as output to model
for fitting

Export Make command-line or Simulink
export model

OutlierIndices Indices of DoubleInputData marked
as outliers

PEV Predicted error variance of model at
specified inputs

PredictedValue Predicted value of model at specified
inputs

Remove Remove project, test plan, or model

SummaryStatistics Summary statistics for response

Local Models

mbcmodel.localresponse — Properties

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response

Name Name of project, data, test plan, or
model

NumberOfTests Total number of tests being used in
model

ResponseFeatures Array of response features for
response

ResponseSignalName Name of signal or response feature
being modeled

1-8

Handling Models

mbcmodel.localresponse — Methods

AlternativeModelStatistics Summary statistics for alternative
models

CreateAlternativeModels Create alternative models from
model template

DiagnosticStatistics Diagnostic statistics for response

DoubleInputData Data being used as input to model

DoubleResponseData Data being used as output to model
for fitting

Export Make command-line or Simulink
export model

MakeHierarchicalResponse Build two-stage model from response
feature models

OutlierIndices Indices of DoubleInputData marked
as outliers

OutlierIndicesForTest Indices marked as outliers for test

PEV Predicted error variance of model at
specified inputs

PEVForTest Local model predicted error variance
for test

PredictedValue Predicted value of model at specified
inputs

PredictedValueForTest Predicted local model response for
test

Remove Remove project, test plan, or model

RemoveOutliers Remove outliers in input data by
index or rule, and refit models

RemoveOutliersForTest Remove outliers on test by index or
rule and refit models

RestoreData Restore removed outliers

RestoreDataForTest Restore removed outliers for test

1-9

1 Commands – By Category

SummaryStatistics Summary statistics for response

UpdateResponseFeatures Refit response feature models

Response Models

mbcmodel.response — Properties

AlternativeResponses Array of alternative responses for
this response

InputSignalNames Names of signals in data that are
being modeled

Level Level in test plan of response

Model Model object within response object

Name Name of project, data, test plan, or
model

NumberOfTests Total number of tests being used in
model

ResponseSignalName Name of signal or response feature
being modeled

mbcmodel.response — Methods

AlternativeModelStatistics Summary statistics for alternative
models

ChooseAsBest Choose best model from alternative
responses

CreateAlternativeModels Create alternative models from
model template

DiagnosticStatistics Diagnostic statistics for response

DoubleInputData Data being used as input to model

1-10

Handling Models

DoubleResponseData Data being used as output to model
for fitting

Export Make command-line or Simulink
export model

OutlierIndices Indices of DoubleInputData marked
as outliers

PEV Predicted error variance of model at
specified inputs

PredictedValue Predicted value of model at specified
inputs

Remove Remove project, test plan, or model

RemoveOutliers Remove outliers in input data by
index or rule, and refit models

RestoreData Restore removed outliers

SummaryStatistics Summary statistics for response

Models
Response objects contain an mbcmodel.model object with the following
properties and methods.

mbcmodel.model — Properties

FitAlgorithm Fit algorithm for model

InputData Input data for model

IsBeingEdited Boolean signaling if data or model
is being edited

NumberOfInputs Number of model inputs

OutputData Output (or response) data for model

Parameters Model parameters

Properties View and edit model properties

1-11

1 Commands – By Category

Response Response for model object

Status Model status: fitted, not fitted or
best

Type Valid model types

XData X (or input) data for model

XDataNames X data (or input) variable names for
model

YData Y (or response) data for model

mbcmodel.linearmodel — Linear Model Methods

AliasMatrix Alias matrix for linear model
parameters

BoxCoxSSE SSE and confidence interval for
Box-Cox transformations

Correlation Correlation matrix for linear model
parameters

Covariance Covariance matrix for linear model
parameters

MultipleVIF Multiple VIF matrix for linear model
parameters

ParameterStatistics Calculate parameter statistics for
linear model

PartialVIF Partial VIF matrix for linear model
parameters

SingleVIF Single VIF matrix for linear model
parameters

StepwiseRegression Change stepwise selection status for
specified terms

1-12

Handling Models

mbcmodel.model — Methods

Evaluate Evaluate model

Export Make command-line or Simulink
export model

Fit Fit model to new or existing data,
and provide summary statistics

getAlternativeTypes Alternative model types

InputSetupDialog Open Input Setup dialog box to edit
inputs

Jacobian Calculate Jacobian matrix for model
at existing or new X points

ModelSetup Open Model Setup dialog box where
you can alter model type

PEV Predicted error variance of model at
specified inputs

PredictedValue Predicted value of model at specified
inputs

StatisticsDialog Open summary statistics dialog box

SummaryStatistics Summary statistics for response

UpdateResponse Replace model in response

mbcmodel.fitalgorithm — Methods
An mbcmodel.fitalgorithm object is contained within the Properties
property of an mbcmodel.model object.

CreateAlgorithm Create algorithm

getAlternativeNames List alternative algorithm names

IsAlternative Test alternative fit algorithm

SetupDialog Open fit algorithm setup dialog box

1-13

1 Commands – By Category

Model Parameters
These properties of the mbcmodel.modelparameters object are all read-only.
An mbcmodel.modelparameters object is contained within the Parameters
property of an mbcmodel.model object.

mbcmodel.modelparameters — Properties

Names Model parameter names

NumberOfParameters Number of included model
parameters

Values Values of model parameters

mbcmodel.linearmodelparameters — Linear Model Properties
A mbcmodel.linearmodelparameters object is a mbcmodel.modelparameters
object plus the following properties.

SizeOfParameterSet Number of model parameters

StepwiseSelection Model parameters currently included
and excluded

StepwiseStatus Stepwise status of parameters in
model

mbcmodel.rbfmodelparameters — RBF Model Properties
A mbcmodel.rbfmodelparameters object is a mbcmodel.linearmodelparameters
object plus the following properties.

Centers Centers of RBF model

Widths Width data from RBF model

1-14

Handling Models

Model Properties

mbcmodel.linearmodelproperties — Methods

GetAllTerms List all model terms

GetIncludedTerms List included model terms

SetTermStatus Set status of model terms

1-15

1 Commands – By Category

1-16

2

Commands — Alphabetical
List

AddFilter

Purpose Add user-defined filter to data set

Syntax D = AddFilter(D, expr)

Description This is a method of mbcmodel.data.

A filter is a constraint on the data set used to exclude some records.
You define the filter using logical operators or a logical function on the
existing variables.

D is the mbcmodel.data object you want to filter.

expr is an input string holding the expression that defines the filter.

Examples AddFilter(D, 'AFR < AFR_CALC + 10');

The effect of this filter is to keep all records where AFR < AFR_CALC
+10.

AddFilter(D, 'MyFilterFunction(AFR, RPM, TQ, SPK)');

The effect of this filter is to apply the function MyFilterFunction using
the variables AFR, RPM, TQ, SPK.

All filter functions receive an nx1 vector for each variable and must
return an nx1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a record to discard.

See Also ModifyFilter, RemoveFilter, Filters, AddTestFilter,
ModifyTestFilter

2-2

AddTestFilter

Purpose Add user-defined test filter to data set

Syntax D = AddTestFilter(D, expr)

Description This is a method of mbcmodel.data.

A test filter is a constraint on the data set used to exclude some entire
tests. You define the test filter using logical operators or functions on
the existing variables.

D is your data object

expr is the input string holding the definition of the new test filter.

Examples AddTestFilter(d1, 'any(n>1000)');

The effect of this filter is to include all tests in which all records have
speed (n) greater than 1000.

Similar to filters, test filter functions are iteratively evaluated on each
test, receiving an nx1 vector for each variable input in a test, and must
return an 1x1 logical array out. In that array, true (or 1) indicates a
record to keep, and false (or 0) indicates a test to discard.

AddTestFilter(data, 'length(LOGNO) > 6');

The effect of this filter is to include all tests with more than 6 records.

See Also ModifyTestFilter, RemoveTestFilter, TestFilters, AddFilter

2-3

AddVariable

Purpose Add user-defined variable to data set

Syntax D = AddVariable(D, expr, units)

Description This is a method of mbcmodel.data.

You can define new variables in terms of existing variables. Note that
variable names are case sensitive.

D is your data object

expr is the input string holding the definition of the new variable

units is an optional input string holding the units of the variable

Examples AddVariable(D, 'MY_NEW_VARIABLE = TQ*AFR/2');
AddVariable(D, 'funcVar = MyVariableFunction(TQ, AFR, RPM)',
'lb');
AddVariable(D, 'TQ=tq');

The last example could be useful if the signal names in the data do not
match the model input factor names in the test plan template file.

See Also ModifyVariable, RemoveVariable, UserVariables

2-4

AliasMatrix

Purpose Alias matrix for linear model parameters

Syntax A = M.AliasMatrix

Description This is a method of mbcmodel.linearmodel.

A = M.AliasMatrix calculates the alias matrix for the linear model
parameters (where M is a linear model).

Examples A = AliasMatrix(knot_model)

See Also ParameterStatistics

2-5

AlternativeModelStatistics

Purpose Summary statistics for alternative models

Syntax S = AlternativeModelStatistics(R)
S = AlternativeModelStatistics(R, Name)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This returns an array (S) of summary statistics of all the alternative
model fits, to be used to select the best model. These are the summary
statistics seen in the list view at the bottom of the Model Browser GUI
in any model view.

You must use CreateAlternativeModels before you can compare the
alternative responses using AlternativeModelStatistics. Then use
ChooseAsBest.

R is the model object whose alternative response models you want to
compare. R could be a local (L), response feature (R) or hierarchical
response (HR) model.

S is a structure containing Statistics and Names fields.

• S.Statistics is a matrix of size (number alternative responses x
number of statistics)

• S.Names is a cell array containing the names of all the statistics

The available statistics vary according to what kind of parent model
(two-stage, local, response feature or response) produced the alternative
models, and include PRESS RMSE, RMSE, and Two-Stage RMSE.

All the available statistics are calculated unless you specify which you
want. You can specify only the statistics you require using the following
form:

S = AlternativeModelStatistics(R, Name)

This returns a double matrix containing only the statistics specified
in Name.

2-6

AlternativeModelStatistics

Note that you use SummaryStatistics to examine the fit of the current
model, and AlternativeModelStatistics to examine the fit of several
alternative child models.

Examples S = AlternativeModelStatistics(R);

See Also CreateAlternativeModels, SummaryStatistics, ChooseAsBest

2-7

AlternativeResponses

Purpose Array of alternative responses for this response

Syntax altR = get(R, 'AlternativeResponses')

Description This is a property of the response model object, mbcmodel.response (R).

It returns a list of alternative responses used for one-stage or response
feature models.

Examples R = get(testplan, 'Responses');
TQ = R(1);
AR = get(TQ, 'AlternativeResponses');

See Also LocalResponses, ResponseFeatures

2-8

Append

Purpose Append data to data set

Syntax D = Append(D, otherData)

Description This is a method of mbcmodel.data.

You can use this to add new data to your existing data set, D.

otherData is the input argument holding the extra data to add below
the existing data. This argument can either be an mbcmodel.data object
or a double array. The behavior is different depending on the type.

If otherData is an mbcmodel.data object then Append will look for
common SignalNames between the two sets of data. If no common
SignalNames are found then a error will be thrown. Any common
signals will be Appended to the existing data and other signals will be
filled with NaN.

If otherData is a double array then it must have exactly the same
number of columns as there are SignalNames in the data, and a simple
vertcat (vertical concatenation) is applied between the existing data
and otherData.

Examples Append(D, CreateData('aDataFile.xls'));
Append(D, rand(10,100));

See Also CreateData

2-9

AttachData

Purpose Attach data from project to test plan

Syntax newD = AttachData(T, D, Property1, Value, Property2, Value...)

Description This is a method of mbcmodel.testplan.

Use it to attach the data you want to model to the test plan.

T is the test plan object, D is the data object.

The following table shows the valid properties and their corresponding
possible values. These are the settings shown in the last page of the
Data Wizard (if there is a design) in the Model Browser. For more
information on the meaning of these settings, refer to the Data Wizard
section (under Data) in the Model Browser User’s Guide. Note that if
the testplan has responses set up the models will be fitted when you
attach data.

Property Value Default

unmatcheddata {’all’, ’none’} 'all'

moredata {’all’, ’closest’} 'all'

moredesign {’none’, ’closest’} 'none'

tolerances [1xNumInputs
double]

ModelRange/20

Examples newD = AttachData(T1, D1, `more data', `all');

tol = [0.075, 100, 1, 2];
unmatch = 'all';
moredata = 'all';
moredes = 'none';
AttachData(testplan, data ,...

'tolerances', tol,...
'unmatcheddata', unmatch,...
'moredata', moredata,...
'moredesign', moredes);

2-10

AttachData

See Also Data, DetachData

2-11

BeginEdit

Purpose Begin editing session on data object

Syntax D = BeginEdit(D)

Description This is a method of mbcmodel.data.

You must call this method before you can make any changes to a data
object.

There are no input arguments. You must call BeginEdit before
attempting to modify your data object (D in the example below) in
any way. An error will be thrown if this condition is not satisfied.
Data which cannot be edited (see IsEditable) will throw an error if
BeginEdit is called.

Examples BeginEdit(D);

See Also CommitEdit, RollbackEdit, IsEditable, IsBeingEdited

2-12

BoxCoxSSE

Purpose SSE and confidence interval for Box-Cox transformations

Syntax [sse, ci, lambda] = BoxCoxSSE(Model, lambda)
[sse, ci, lambda] = BoxCoxSSE(Model)
BoxCoxSSE(Model, ...)

Description This is a method of mbcmodel.linearmodel.

[sse, ci, lambda] = BoxCoxSSE(Model, lambda) computes the sum
of squares error (sse) and confidence interval (ci) for values of the
model under different Box-Cox transforms (as given by the parameter
lambda). The data used is that which was used to fit the model. sse is a
vector the same size as lambda and ci is a scalar. There is no statistical
difference between the Box-Cox transforms where sse less than ci.

[sse, ci, lambda] = BoxCoxSSE(Model) If lambda is not specified,
then default values for are used and these are returned in third output
argument.

BoxCoxSSE(Model, ...) If no output arguments are requested then a
plot of SSE versus lambda is displayed. The confidence intervals are
also displayed on this plot.

Examples To try several different values, of the Box-Cox parameter and plot the
results:

lambda = -3:0.5:3;
[sse, ci] = BoxCoxSSE(M, lambda);
semilogy(lambda, sse, 'bo-', lambda([1,end]), [ci, ci], 'r--');
xlabel('Box-Cox parameter, \lambda');
ylabel('SSE');

Note that BoxCoxSSE does not set a Box-Cox transform in the model.
To do this use:

M.Properties.BoxCox = 0;
[S,M] = M.Fit;

See Also ParameterStatistics

2-13

Centers

Purpose Centers of RBF model

Syntax centers = get(params, 'Centers')

Description This is a property of mbcmodel.rbfmodelparameters, for Radial
Basis Function (RBF) models only. This returns an array of size
number_of_centers by number_of_variables.

Examples centers = get(params, 'Centers');

See Also Widths

2-14

ChooseAsBest

Purpose Choose best model from alternative responses

Syntax ChooseAsBest(R, Index)

Description This is a method of the response model object, mbcmodel.response.
This is the same function as selecting the best model in the Model
Selection window of the Model Browser GUI. For a local model
MakeHierarchicalResponse performs a similar function.

R is the object containing the response model

Index is the number of the response model you want to choose as best.
Use AlternativeResponses to find the index for each response model,
and use AlternativeModelStatistics to choose the best fit.

Examples ChooseAsBest(R, AlternativeModel)
RMSE = AlternativeModelStatistics(R, 'RMSE');
[mr, Best] = min(RMSE);
ChooseAsBest(R, Best);

See Also AlternativeResponses, AlternativeModelStatistics,
DiagnosticStatistics, MakeHierarchicalResponse

2-15

CommitEdit

Purpose Update temporary changes in data

Syntax D = CommitEdit(D)

Description This is a method of mbcmodel.data.

Use this to apply changes you have made to the data, such as creating
new variables and applying filters to remove unwanted records.

There are no input arguments. Once you have finished editing your
data object D you must commit your changes back to the project. Data
can only be committed if both IsEditable and IsBeingEdited are true.
CommitEdit will throw an error if these conditions are not met.

Examples D = get(P, 'Data');
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
CommitEdit(D);

For an example situation which results in CommitEdit failing:

D = get(p, 'Data');
D1 = get(p, 'Data');
BeginEdit(D1);
tp = get(p, 'Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point IsEditable(D1) becomes false because it is now Attached
to the test plan and hence can only be modified from the test plan. If
you now enter:

OK = get(D1, 'IsEditable')

the answer is false.

2-16

CommitEdit

If you now enter:

CommitEdit(D1);

An error is thrown because the data is no longer editable. The error
message informs you that the data may have been attached to a test
plan and can only be edited from there.

See Also BeginEdit, RollbackEdit, IsEditable, IsBeingEdited

2-17

CopyData

Purpose Create data object from copy of existing object

Syntax newD = CopyData(P, D)
newD = CopyData(P, Index)

Description This is a method of mbcmodel.project.

Use this to duplicate data, for example if you want to make changes for
further modeling but want to retain the existing data set. You can refer
to the data object either by name or index.

P is the project object.

D is the data object you want to copy.

Index is the index of the data object you want to copy.

Examples D2 = CopyData(P1, D1);

See Also Data, CreateData, RemoveData

2-18

Correlation

Purpose Correlation matrix for linear model parameters

Syntax STATS = Correlation(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = Correlation(LINEARMODEL) calculates the correlation matrix
for the linear model parameters.

Examples Stats = Correlation(knot_model)

See Also ParameterStatistics

2-19

Covariance

Purpose Covariance matrix for linear model parameters

Syntax STATS = Covariance(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = Covariance(LINEARMODEL) calculates the covariance matrix
for the linear model parameters.

Examples Stats = Covariance(knot_model)

See Also ParameterStatistics

2-20

CreateAlgorithm

Purpose Create algorithm

Syntax newalg = alg.CreateAlgorithm(AlgorithmName)

Description This is a method of mbcmodel.fitalgorithm.

newalg = alg.CreateAlgorithm(AlgorithmName) creates an
algorithm of the specified type. alg is a mbcmodel.fitalgorithm object.
AlgorithmName must be in the list of alternative algorithms given by
alg.getAlternativeNames.

To change the fit algorithm for a model:

>> mdl = mbcmodel.CreateModel('Polynomial', 2);
>> minpress = mdl.FitAlgorithm.CreateAlgorithm('Minimize PRESS');
>> mdl.FitAlgorithm = minpress;

The AlgorithmName determines what properties you can set. You can
display the properties for an algorithm as follows:

>> mdl.FitAlgorithm.properties

Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

MaxIter: Maximum Iterations (int: [1,1000])

The following sections list the properties available for each algorithm
type.

Linear
Model
Algorithm
Properties

Linear Models Algorithms

Used by polynomials, hybrid splines and as the StepAlgorithm for RBF
algorithms.

Algorithm: Least Squares

Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'

2-21

CreateAlgorithm

Algorithm: Minimize PRESS

Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

• MaxIter: Maximum Iterations (int: [1,1000])

Algorithm: Forward Selection

Alternatives: 'Least Squares','Minimize PRESS','Backward
Selection','Prune'

• ConfidenceLevel: Confidence level (%) (numeric: [70,100])

• MaxIter: Maximum Iterations (int: [1,1000])

• RemoveAll: Remove all terms first (Boolean)

Algorithm: Backward Selection

Alternatives: 'Least Squares','Minimize PRESS','Forward
Selection','Prune'

• ConfidenceLevel: Alpha (%) (numeric: [70,100])

• MaxIter: Maximum Iterations (int: [1,1000])

• IncludeAll: Include all terms first (Boolean)

Algorithm: Prune

Alternatives: 'Least Squares','Minimize PRESS','Forward
Selection','Backward Selection'

• Criteria (PRESS RMSE|RMSE|GCV|Weighted
PRESS|-2logL|AIC|AICc|BIC|R^2|R^2 adj|PRESS
R^2|DW|Cp|cond(J))

• MinTerms: Minimum number of terms (int: [0,Inf])

• Tolerance (numeric: [0,1000])

2-22

CreateAlgorithm

• IncludeAll: Include all terms before prune (Boolean)

• Display (Boolean)

RBF Algorithm Properties

For information about any of the RBF and Hybrid RBF algorithm
properties, see “Radial Basis Functions”, and especially “Fitting
Routines” in the Model Browser User’s Guide.

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)

• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Alternatives: 'WidPerDim','Tree Regression'

Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda selection algorithm
(mbcmodel.fitalgorithm)

• Trials: Number of trial widths in each zoom (int: [2,100])

• Zooms: Number of zooms (int: [1,100])

• MinWidth: Initial lower bound on width (numeric:
[2.22045e-016,1000])

• MaxWidth: Initial upper bound on width (numeric:
[2.22045e-016,100])

• PlotFlag: Display plots (Boolean)

• PlotProgress: Display fit progress (Boolean)

Algorithm: WidPerDim

Alternatives: 'TrialWidths','Tree Regression'

2-23

CreateAlgorithm

• NestedFitAlgorithm: Lambda selection algorithm
(mbcmodel.fitalgorithm)

• DisplayFlag: Display (Boolean)

• MaxFunEvals: Maximum number of test widths (int: [1,1e+006])

• PlotProgress: Display fit progress (Boolean)

Algorithm: Tree Regression

Alternatives: 'TrialWidths','WidPerDim'

• MaxNumRectangles: Maximum number of panels (int: [1,Inf])

• MinPerRectangle: Minimum data points per panel (int: [2,Inf])

• RectangleSize: Shrink panel to data (Boolean)

• AlphaSelectAlg: Alpha selection algorithm (mbcmodel.fitalgorithm)

Lambda Selection Algorithms
Algorithm: IterateRidge

Alternatives: 'IterateRols','StepItRols'

• CenterSelectionAlg: Center selection algorithm
(mbcmodel.fitalgorithm)

• MaxNumIter: Maximum number of updates (int: [1,100])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• NumberOfLambdaValues: Number of initial test values for lambda
(int: [0,100])

• CheapMode: Do not reselect centers for new width (Boolean)

• PlotFlag: Display (Boolean)

Algorithm: IterateRols

Alternatives: 'IterateRidge','StepItRols'

2-24

CreateAlgorithm

• CenterSelectionAlg: Center selection algorithm
(mbcmodel.fitalgorithm)

• MaxNumIter: Maximum number of iterations (int: [1,100])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• NumberOfLambdaValues: Number of initial test values for lambda
(int: [0,100])

• CheapMode: Do not reselect centers for new width (Boolean)

• PlotFlag: Display (Boolean)

Algorithm: StepItRols

Alternatives: 'IterateRidge','IterateRols'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

• StartLambdaUpdate: Number of centers to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

Center Selection Algorithms
Algorithm: Rols

Alternatives: 'RedErr','WiggleCenters','CenterExchange'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

2-25

CreateAlgorithm

• Tolerance: Regularized error tolerance (numeric: [2.22045e-016,1])

Algorithm: RedErr

Alternatives: 'Rols','WiggleCenters','CenterExchange'

• MaxCenters: Number of centers (evalstr)

Algorithm: WiggleCenters

Alternatives: 'Rols','RedErr','CenterExchange'

• MaxCenters: Number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

Algorithm: CenterExchange

Alternatives: 'Rols','RedErr','WiggleCenters'

• MaxCenters: Number of centers (evalstr)

• NumLoops: Number of augment/reduce cycles (int: [1,Inf])

• NumAugment: Number of centers to augment by (int: [1,Inf])

Tree Regression Algorithms
Algorithm: Trial Alpha

Alternatives: 'Specify Alpha'

• AlphaLowerBound: Initial lower bound on alpha (numeric:
[2.22045e-016,Inf])

• AlphaUpperBound: Initial upper bound on alpha (numeric:
[2.22045e-016,Inf])

• Zooms: Number of zooms (int: [1,Inf])

• Trials: Trial alphas per zoom (int: [2,Inf])

2-26

CreateAlgorithm

• Spacing: Spacing (Linear|Logarimthic)

• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

Algorithm: Specify Alpha

Alternatives: 'Trial Alpha'

• Alpha: Width scale parameter, alpha (numeric: [2.22045e-016,Inf])

• NestedFitAlgorithm: Center selection algorithm
(mbcmodel.fitalgorithm)

Algorithm: Tree-based Center Selection

Alternatives: 'Generic Center Selection'

• ModelSelectionCriteria: Model selection criteria (BIC|GCV)

• MaxNumberCenters: Maximum number of centers (evalstr)

Algorithm: Generic Center Selection

Alternatives: 'Tree-based Center Selection'

• CenterSelectAlg: Center selection algorithm (mbcmodel.fitalgorithm)

Hybrid RBF Algorithms

Algorithm: RBF Fit

• WidthAlgorithm: Width selection algorithm (mbcmodel.fitalgorithm)

• StepAlgorithm: Stepwise (mbcmodel.fitalgorithm)

Width Selection Algorithms
Algorithm: TrialWidths

• NestedFitAlgorithm: Lambda and term selection algorithm
(mbcmodel.fitalgorithm)

• Trials: Number of trial widths in each zoom (int: [2,100])

2-27

CreateAlgorithm

• Zooms: Number of zooms (int: [1,100])

• MinWidth: Initial lower bound on width (numeric:
[2.22045e-016,1000])

• MaxWidth: Initial upper bound on width (numeric:
[2.22045e-016,100])

• PlotFlag: Display plots (Boolean)

• PlotProgress: Display fit progress (Boolean)

Nested Fit Algorithms
Algorithm: Twostep

Alternatives: 'Interlace'

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

• StartLambdaUpdate: Number of terms to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

• PlotFlag: Display (Boolean)

Algorithm: Interlace

Alternatives: 'Twostep'

• MaxParameters: Maximum number of terms (evalstr)

• MaxCenters: Maximum number of centers (evalstr)

• PercentCandidates: Percentage of data to be candidate centers
(evalstr)

2-28

CreateAlgorithm

• StartLambdaUpdate: Number of terms to add before updating (int:
[1,Inf])

• Tolerance: Minimum change in log10(GCV) (numeric:
[2.22045e-016,1])

• MaxRep: Maximum number of times log10(GCV) change is minimal
(int: [1,100])

Examples First get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

Then, to create a new algorithm type:

Alg = CreateAlgorithm(F, 'Minimize PRESS')

Alg =
Algorithm: Minimize PRESS
Alternatives: 'Least Squares','Forward Selection','Backward
Selection','Prune'

MaxIter: 50

See Also getAlternativeNames, SetupDialog

2-29

CreateAlternativeModels

Purpose Create alternative models from model template

Syntax R = CreateAlternativeModels(R, modeltemplate, criteria)
R = CreateAlternativeModels(R, modellist, criteria
R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

This is the same as the Build Models function in the Model Browser
GUI. A selection of child node models are built. The results depend on
where you call this method from. Note that the hierarchical model is
automatically constructed when CreateAlternativeModels is called
for a local model.

• This option makes alternative response feature models for each
response feature.

R = CreateAlternativeModels(R, models, criteria)

- Models is the list of models. You can use a model template
file (.mbm) created in the Model Browser, or a cell array of
mbcmodel.model objects.

- Criteria is the selection criteria for best model (from the statistics
available from AlternativeModelStatistics).

• This option makes alternative local models as well as alternative
response feature models

R = CreateAlternativeModels(R,
LocalModels,LocalCriteria,GlobalModels,GlobalCriteria)

- LocalModels is the list of local models - you must pass in an
empty matrix)

- LocalCriteria is 'Two-Stage RMSE'

2-30

CreateAlternativeModels

- GlobalModels is the list of global models (from the model template)

- GlobalCriteria is the selection criteria for best model

You construct a model template file (such as 'mymodels.mbm') in the
Model Browser. From any response (global or one-stage model) with
alternative responses (child nodes), select Model > Make Template.
You can save the child node model types of your currently selected
modeling node as a model template. Alternatively from any response
click Build Models in the toolbar and create a series of alternative
response models in the dialog.

Examples mymodels = 'mymodels.mbm';
mlist = {};
load('-mat', mymodels);
critera = 'PRESS RMSE';
CreateAlternativeModels(R, [], 'Two-Stage RMSE', mlist,
criteria);

Note that the model template contains the variable mlist.

CreateAlternativeModels(RESPONSE, 'alternative_models.mbm', 'Weighted PRESS')

creates alternative response feature models based upon the model
template file alternative_models.mbt, and chooses the best model
based upon each model’s Weighted PRESS statistic.

See Also AlternativeModelStatistics

2-31

CreateData

Purpose Create data object

Syntax D = CreateData(P, filename, filetype)
D = mbcmodel.CreateData(filename, filetype)

Description The first syntax is a method of mbcmodel.project. Use this to create a
new data object in an existing project. P is the project object.

filename and filetype are optional arguments that are used to load
data from a file into the new data object at creation time.

filename is a string specifying the full path to the file.

filetype is a string specifying the file type. See DataFileTypes for the
specification of allowed file types (and mbccheckindataloadingfcn to
specify your own data loading function). If filetype is not provided,
then MBC will attempt to infer the file type from the file extension, i.e.
if the file extension is .xls then MBC will try the Excel File Loader.

If filename is not provided then no data will be loaded into the new
data object. Data can be loaded subsequently using ImportFromFile,
provided that editing of the data object has been enabled via a call to
BeginEdit. Call CommitEdit to apply edits.

The second syntax is a function. Use this to create a new data object
independent of any project.

Examples data = CreateData(P, 'D:\MBCWork\data1.xls');
D = mbcmodel.CreateData;
D = mbcmodel.CreateData('D:\MBCWork\data.xls');

Where P is an mbcmodel.project object.

See Also DataFileTypes, BeginEdit, CopyData, RemoveData, Data,
ImportFromFile, CommitEdit

2-32

CreateModel

Purpose Create new model

Syntax M = mbcmodel.CreateModel(Type, NUMINPUTS)
NewModel = CreateModel(model,Type)
M = mbcmodel.CreateModel(Type, FACTORINFO)

Description M = mbcmodel.CreateModel(Type, NUMINPUTS) This syntax is a
function that creates an mbcmodel.model object of the specified Type.

NewModel = CreateModel(model,Type) This syntax is a function that
creates a new model with the same inputs as an existing model. Use
this to create a new model object independent of any project. model is
an mbcmodel.model object.

You can use getAlternativeTypes to get a list of valid model types or
see Type. Spaces and case in Type are ignored.

M = mbcmodel.CreateModel(Type, FACTORINFO)

NUMINPUTS can be the number of inputs or a cell array FACTORINFO
specifying factor names, symbols, ranges and nonlinear transforms
as follows.

The columns of FACTORINFO should be:

1 Factor symbol (string)

2 Minimum (double)

3 Maximum (double)

4 Transform (string) — empty for none

5 Signal name

These are the same as the columns in the Model Factor Setup dialog box
that can be launched from the test plan in the model browser.

2-33

CreateModel

Examples To create a hybrid spline with four input factors:

M = mbcmodel.CreateModel('Hybrid Spline', 4)

To create an RBF with four input factors:

RBFModel = mbcmodel.CreateModel('RBF', {...
'N', 800, 5000, '', 'ENGSPEED'
'L', 0.1, 1, '', 'LOAD'
'EXH', -5, 50, '', 'EXHCAM'
'INT', -5, 50, '', 'INTCAM'

}),

To create a polynomial with the same input factors as the previously
created RBF:

PolyModel = CreateModel(RBFModel,'Polynomial')

See Also getAlternativeTypes , CreateProject , CreateData

2-34

CreateProject

Purpose Create project object

Syntax P = mbcmodel.CreateProject

Description This is a function that creates an mbcmodel.project object.

P is the project object.

P = mbcmodel.CreateProject creates an mbcmodel.project
called Untitled. P = mbcmodel.CreateProject(NAME) creates an
mbcmodel.project called NAME.

Examples P = mbcmodel.CreateProject;

Create a project called MBT_Project:

P = mbcmodel.CreateProject('MBT_Project');

2-35

CreateResponse

Purpose Create new response model for test plan

Syntax R = CreateResponse(T, name)

Description This is a method of mbcmodel.testplan.

T is the test plan object, R is the new response model.

name is the variable name for the new response.

Examples R = CreateResponse(T, 'torque');
TQ_response = CreateResponse(testplan, 'TQ');

See Also Responses

2-36

CreateTestplan

Purpose Create new test plan

Syntax T = CreateTestplan(P, TestPlanTemplate)
T = CreateTestplan(P, TestPlanTemplate, newtestplanname)
T = CreateTestplan(P, InputsPerLevel)
T = CreateTestplan(P, InputsPerLevel, newtestplanname)
T = CreateTestplan(P, Inputs)
T = CreateTestplan(P, Inputs, newtestplanname)

Description This is a method of the mbcmodel.project object.

You need a test plan template to use this method from the command
line. You set these up in the Model Browser GUI. This set up includes
number of stages, inputs, base models, and designs. If the test plan is
used as part of a previous project it is also possible to save response
models in the test plan.

Once you have created a new test plan (using a template) you can add
data to model, and new responses. Note that the model input signal
names specified in the template must match the signal names in the
data.
T = CreateTestplan(P, TestPlanTemplate)

T = CreateTestplan(P, TestPlanTemplate, newtestplanname)

T = CreateTestplan(P, InputsPerLevel)

T = CreateTestplan(P, InputsPerLevel, newtestplanname)

T = CreateTestplan(P, Inputs)

T = CreateTestplan(P, Inputs, newtestplanname)

P is the project object.

TestPlanTemplate is the full name and path to the test plan template
file created in the Model Browser.

newtestplanname is the optional name for the new test plan object.

2-37

CreateTestplan

InputsPerLevel is a row vector with number of inputs for each stage.

Inputs is a cell array with input information for each level.

Examples T = CreateTestplan(P1, 'd:\MBCwork\TQtemplate1', 'newtestplan')

testplan = CreateTestplan(P, 'example_testplan')

To specify the input information in a cell array:

localInputs = {`S',0,50,'','SPARK'};
globalInputs = {'N', 800, 5000, '', 'ENGSPEED'

'L', 0.1, 1, '', 'LOAD'
'EXH', -5, 50, '', 'EXHCAM'
'INT', -5, 50, '', 'INTCAM'};

T = CreateTestplan(P,{localInputs,globalInputs});

See Also AttachData, CreateResponse, Responses, Data, Levels,
InputSignalNames, InputsPerLevel

2-38

Data

Purpose Array of data objects in project or test plan

Syntax allD = get(p, 'Data')
allD = get(T, 'Data')

Description This is a property of mbcmodel.project and mbcmodel.testplan.

It returns an array of mbcmodel.data objects. There may be many data
objects in a project, but a test plan can only have one or none.

Examples allD = get(p, 'Data');

For a project object p, this example returns an nx1 array of all the data
objects.

allD = get(T, 'Data');

For the test plan object T, this example returns a 1x1 array if the test
plan has a data object attached, and 0x1 otherwise.

See Also CreateData, RemoveData, CopyData

2-39

DataFileTypes

Purpose Data file types

Syntax f = mbcmodel.DataFileTypes

Description This is a function to return a list of data file types for mbcmodel.

Examples f = mbcmodel.DataFileTypes

f =

Columns 1 through 4
'Excel file' 'FT/DB data files' 'Delimited Text File'

[1x25 char]
Column 5

'MATLAB Data File'

See Also ImportFromFile, CreateData

2-40

DefineNumberOfRecordsPerTest

Purpose Define exact number of records per test

Syntax D = DefineNumberOfRecordsPerTest(D, number, testnumAlias)

Description This is a method of mbcmodel.data.

You can use this to set one test per record for one-stage modeling.

number is the input specifying the number of records to include in each
test. Most usually this will be used to specify one test per record.

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumaAias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

Examples DefineNumberOfRecordsPerTest(D, 1);
DefineNumberOfRecordsPerTest(D, 10, 'MYLOGNO');

See Also DefineTestGroups

2-41

DefineTestGroups

Purpose Define rule-based test groupings

Syntax D = DefineTestGroups(D, variables, tolerances, testnumAlias,
reorder)

Description This is a method of mbcmodel.data.

You can impose rules to collect records of the current data set (D) into
groups; these groups are referred to as tests. Test groupings are used to
define hierarchical structure in the data for two-stage modeling.

Select a variable or variables to group by and set tolerances. The
tolerance is used to define groups: on reading through the data, when
the value of any specified variable changes by more than the tolerance,
a new group is defined.

variables is the input cell array of strings holding the SignalNames on
which to define the test groupings

tolerances is the input double array of the same length as variables
holding the required tolerances for the test grouping definition

testnumAlias is an optional string input to define the SignalName that
should be used as the testnumber within MBC. Defaults to the index
of the test.

Note testnumAlias uses the first record in the test as the testnumber,
and testnumbers are unique so any duplicates will be modified.

reorder is an optional Boolean indicating that the data should be
reordered within the data set. Defaults to false.

See the section on Test Groupings (under Data) in the Model Browser
User’s Guide for more information on these inputs.

Examples DefineTestGroups(D, {'AFR' 'RPM'}, [0.1 30], 'MYLOGNO', false);

2-42

DefineTestGroups

See Also DefineNumberOfRecordsPerTest, NumberOfTests

2-43

DetachData

Purpose Detach data from test plan

Syntax T = DetachData(T)

Description This is a method of mbcmodel.testplan.

T is the test plan object. A test plan can only use a single data set, so
you do not need to specify the data object.

Examples DetachData(T1);

See Also AttachData

2-44

DiagnosticStatistics

Purpose Diagnostic statistics for response

Syntax S = DiagnosticStatistics(R, TestNumbers, Stats)

Description This is a method of the local and response model objects,
mbcmodel.localresponse and mbcmodel.response.

The options available are model-specific and are the same options
shown in the drop-down menus of the scatter plots (the top plots) in the
local and global (response feature) model views of the toolbox GUI.

S is a structural array containing Statistics and Names fields.

R is the response model object.

Testnumbers specifies the index into tests for local or hierarchical
models.

Stats is an optional input that defines which diagnostic statistics you
want from the available list. If you don’t specify Stats, you get all
available statistics.

A row is set to NaN if that point is removed.

Examples studentRes = DiagnosticStatistics(local, tn, 'Studentized
residuals');

See Also SummaryStatistics, AlternativeModelStatistics

2-45

DoubleInputData

Purpose Data being used as input to model

Syntax X = DoubleInputData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(X) containing the input data used for fitting the model.

R is the response model object

TestNumber is an optional input to specify the tests you want.

Examples X = DoubleInputData(R);
x = DoubleInputData(local, tn);

See Also DoubleResponseData

2-46

DoubleResponseData

Purpose Data being used as output to model for fitting

Syntax Y = DoubleResponseData(R, TestNumber)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response. It returns an array
(Y) containing the response data used for fitting the model.

R is the response model object.

TestNumber is an optional input to specify the tests you want.

Examples Y = DoubleResponseData(R);
y = DoubleResponseData(local, tn);

See Also DoubleInputData

2-47

Evaluate

Purpose Evaluate model

Syntax Y = Evaluate(M, X)

Description This is a method of mbcmodel.model.

Y = Evaluate(M, X) evaluates the model at X.

X is a (numpoints-by-nfactors) array.

Y is a (numpoints-by-1) array.

See Also PredictedValue, PEV

2-48

Export

Purpose Make command-line or Simulink export model

Syntax ExportedModel = Export(MODEL)
ExportedModel = Export(MODEL, Format)

Description This is a method of these model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse,
mbcmodel.response and mbcmodel.model.

ExportedModel = Export(MODEL) exports the model to MATLAB.

ExportedModel = Export(MODEL, Format) exports the model in the
specified format, which can be 'MATLAB' or 'Simulink'.

Format must be 'MATLAB' or 'Simulink'; an error will be thrown if
this is incorrect.

You can evaluate models exported to the MATLAB workspace in the
same way as when exported from the Model Browser. You can save
these models as a *.mat file and load them into CAGE.

Model is the object containing the response models from the node you
are exporting from.

Examples M = Export(R2, 'MATLAB');
mbt_model = Export(maxTQ, 'MATLAB');

2-49

ExportToMBCDataStructure

Purpose Export data to MBC data structure

Syntax mbcStruct = ExportToMBCDataStructure (D)

Description This is a method of mbcmodel.data.

It converts the specified data object (D) to the MBC Data Structure
format.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1)

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined

• data is an array that holds the values of the variables (m x n)

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Data) in the Model Browser User’s Guide (“Data Loading Application
Programming Interface”). See also mbccheckindataloadingfcn to
specify your own data loading function.

Examples X = ExportToMBCDataStructure(D1);

See Also ImportFromMBCDataStructure

2-50

Filename

Purpose Full path to project file

Syntax Name = get(P, 'Filename')

Description This is a property of mbcmodel.project.

Examples Name = get(P, 'Filename');

2-51

Filters

Purpose Structure array holding user-defined filters

Syntax filt = get(D, `Filters')

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined filters, with the following fields for each filter:

• Expression — The string expression as defined in AddFilter or
ModifyFilter

• AppliedOK — Boolean indicating that the filter was successfully
applied

• RemovedRecords — Boolean vector indicating which records the filter
removed. Note that many filters could remove the same record

• Message — String holding information on the success or otherwise
of the filter

Examples filters = get(D1, 'Filters');

See Also AddFilter, ModifyFilter, RemoveFilter

2-52

FitAlgorithm

Purpose Fit algorithm for model

Syntax F = M.FitAlgorithm

Description This is a property of mbcmodel.model.

An mbcmodel.model.FitAlgorithm object is contained within the
FitAlgorithm property of an mbcmodel.model object. This object
has a Name property, and the following methods: CreateAlgorithm,
getAlternativeNames, IsAlternative, SetupDialog, properties.

Examples To get a fitalgorithm object, F, from a model:

M = mbcmodel.CreateModel('Polynomial', 4);
F = M.FitAlgorithm

F =
Algorithm: Least Squares
Alternatives: 'Minimize PRESS','Forward Selection','Backward
Selection','Prune'
1x1 struct array with no fields.

See Also CreateAlgorithm, getAlternativeNames, IsAlternative,
SetupDialog.

2-53

Fit

Purpose Fit model to new or existing data, and provide summary statistics

Syntax [statistics, model] = Fit(model, optional X, optional Y)

Description This is a method of mbcmodel.model.

[statistics, model] = Fit(model, optional X, optional Y)
This fits the model to new data or its existing data. If X and Y are not
specified then the existing model XData and YData are used, otherwise
X and Y are placed in XData and YData and the model fitted.

The statistics returned are defined by the summary statistics
for the response object the model came from. To see these call
SummaryStatistics. These are the statistics that appear in the
Summary Statistics pane of the Model Browser GUI. The statistics
returned depend on the model type.

For a linear model, the statistics are:

’Observations’,’Parameters’,’Box-Cox’,’PRESS RMSE’,’RMSE’.

For a neural net model:

’Observations’,’Parameters’, ’Box-Cox’,’RMSE’, ’R^2’.

Examples statistics = Fit(knot)
statistics =

27.0000 7.0000 1.0000 3.0184 2.6584

See Also SummaryStatistics, UpdateResponse

2-54

GetAllTerms

Purpose List all model terms

Syntax Terms = M.Properties.GetAllTerms

Description This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetAllTerms returns a list of all terms in this
model. M is an mbcmodel.linearmodel object.

Terms is a (numterms-by-nfactors) array. The (m,n)th element is the
power of the nth factor in the mth term.

Examples The following example creates a model, and finds which terms are
quadratic in the first input factor (X1):

mdl = mbcmodel.CreateModel('Polynomial', 2)

mdl =

1 + 2*X1 + 8*X2 + 3*X1^2 + 6*X1*X2 + 9*X2^2 + 4*X1^3
+ 5*X1^2*X2 + 7*X1*X2^2 + 10*X2^3

InputData: [0x2 double]
OutputData: [0x1 double]
Status: Not fitted
Linked to Response: <not linked>

>>terms = mdl.Properties.GetAllTerms;
>>x1quadraticterms = find(terms(:,1)==2)

x1quadraticterms =

4
8

See Also GetIncludedTerms

2-55

getAlternativeNames

Purpose List alternative algorithm names

Syntax F.getAlternativeNames
AltList = getAlternativeNames(F)

Description This is a method of mbcmodel.fitalgorithm.

F.getAlternativeNames or AltList = getAlternativeNames(F)
return a cell array of alternative algorithm names. F is a
mbcmodel.fitalgorithm object.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);
F = mdl.FitAlgorithm;
altAlgs = F.getAlternativeNames

altAlgs =

'Least Squares' 'Minimize PRESS' 'Forward Selection'
'Backward Selection' 'Prune'

See Also CreateAlgorithm, IsAlternative

2-56

getAlternativeTypes

Purpose Alternative model types

Syntax list = getAlternativeTypes(mdl)

Description This is a method of mbcmodel.model.

list = getAlternativeTypes(mdl) returns a cell array of alternative
model types with the same number of inputs as mdl.

Examples mdl = mbcmodel.CreateModel('RBF', 2);
altmodels = getAlternativeTypes(mdl)

This produces the output:

altmodels =

Columns 1 through 6

'Polynomial' 'Hybrid Spline' 'RBF' 'Polynomial-RBF'
'Multiple Linear'

Columns 7 through 8

'Neural Network' 'Transient'

See Also Type, CreateModel

2-57

GetDesignMatrix

Purpose Design points from test plan

Syntax design = GetDesignMatrix(T)

Description This is a method of mbcmodel.testplan.

It returns a double array holding the values of the design points.

Examples design = GetDesignMatrix(T);

2-58

GetIncludedTerms

Purpose List included model terms

Syntax Terms = M.Properties.GetIncludedTerms

Description This is a method of mbcmodel.linearmodelproperties.

Terms = M.Properties.GetIncludedTerms returns a list of those
terms that will be used to fit the model. M is an mbcmodel.linearmodel
object.

Terms is a (numincludedterms-by-nfactors) array. The (m,n)th element is
the power of the nth factor in the mth included term.

Examples >>mdl = mbcmodel.CreateModel('Polynomial', 2);

>>includedterms = mdl.Properties.GetIncludedTerms;
>>x1quadraticterms = find(includedterms(:,1)==2)

x1quadraticterms =

4
8

See Also GetAllTerms, SetTermStatus

2-59

GetTermLabel

Purpose List labels for model terms

Syntax Labels = M.Properties.GetTermLabel
Labels = M.Properties.GetTermLabel(Terms)
Labels = M.Properties.GetTermLabel(Terms, 'Format',

OutputFormat)

Description This is a method of mbcmodel.linearmodelproperties, which returns
a user-friendly label for one or more specified terms.

Labels = M.Properties.GetTermLabel

Labels = M.Properties.GetTermLabel(Terms)

Labels = M.Properties.GetTermLabel(Terms, 'Format',
OutputFormat)

M is an mbcmodel.linearmodel object.

The specified terms form a row where each value gives the power of that
parameter. OutputFormat

can be 'List' or 'Formula'.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);
mdl.Properties.GetTermLabel([1 2; 1 0])

produces {'X1*X2^2';'X1'} and

mdl.Properties.GetTermLabel([1 2; 1 0], 'Format', 'Formula')

produces 'X1*X2^2 + X1'.

See Also GetAllTerms, GetIncludedTerms

2-60

GetTermStatus

Purpose List status of some or all model terms

Syntax Status = M.Properties.GetTermStatus
Status = M.Properties.GetTermStatus(Terms)

Description This is a method of mbcmodel.linearmodelproperties.

Status = M.Properties.GetTermStatus returns the status of all of
the terms in this model. Status is a cell array of status strings. M is
an mbcmodel.linearmodel object.

Status = M.Properties.GetTermStatus(Terms) returns the status of
the specified terms in this model.

The stepwise status for each term can be ’Always’, ’Never’ or ’Step’.
The status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

Examples mdl = mbcmodel.CreateModel('Polynomial', 2);

Get status of X23 term:

status = mdl.Properties.GetTermStatus([0 3])

status =

'Step'

Get status of all terms linear in X1:

status = mdl.Properties.GetTermStatus([1 0; 1 1; 1 2])

status =

'Step'
'Step'
'Step'

2-61

GetTermStatus

See Also SetTermStatus, StepwiseStatus

2-62

ImportFromFile

Purpose Load data from file

Syntax D = ImportFromFile(D, filename, filetype)

Description This is a method of the mbcmodel.data object.

First you must use CreateData, than BeginEdit before you can call
ImportFromFile to bring data into your new data object, D.

Note that you can specify filename and filetype when you call
CreateData as a shortcut for loading data from a file. You still need to
call BeginEdit before you can make changes to the data.

filename is a string holding the full path to the file to load.

filetype is an optional file type to load. See DataFileTypes for the
specification of the allowed file types (and mbccheckindataloadingfcn
to specify your own data loading function).

Filetype defaults to ’auto’ which will attempt to guess the filetype based
on the extension of the file being loaded. i.e. if the file extension is .xls
then MBC will try the Excel File Loader.

Examples ImportFromFile(D, 'D:\MBCData\Raw Data\testdata.xls');

See Also CreateData, DataFileTypes, BeginEdit,
ImportFromMBCDataStructure, RemoveData, Append

2-63

ImportFromMBCDataStructure

Purpose Load data from MBC data structure

Syntax D = ImportFromMBCDataStructure(D, mbcStruct)

Description This is a method of mbcmodel.data.

First you must use CreateData, than BeginEdit before you can bring
data into your new data object.

An MBC Data Structure is a structure array that contains the following
fields:

• varNames is a cell array of strings that hold the names of the
variables in the data (1xn or nx1)

• varUnits is a cell array of strings that hold the units associated with
the variables in varNames (1xn or nx1). This array can be empty, in
which case no units are defined

• data is an array that holds the values of the variables (m x n)

• comment is an optional string holding comment information about
the data.

For more information see the Data Loading Function section (under
Data) in the Model Browser User’s Guide (“Data Loading Application
Programming Interface”), and see also mbccheckindataloadingfcn to
specify your own data loading function.

Examples ImportFromMBCDataStructure(D, mbcStruct);

See Also ImportFromFile, CreateData, BeginEdit, RemoveData, Append,
ExportToMBCDataStructure

2-64

InputData

Purpose Input data for model

Syntax D = M.InputData

Description This is a property of mbcmodel.model. It returns an array of the input
variable data currently in the model.

Examples D = knot.InputData;

See Also OutputData

2-65

InputSetupDialog

Purpose Open Input Setup dialog box to edit inputs

Syntax [NEWMODEL, OK] = InputSetupDialog(OLDMODEL)
[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN)

Description This is a method of mbcmodel.model and mbcmodel.testplan.

[NEWMODEL, OK] = InputSetupDialog(OLDMODEL) opens the Input
Setup dialog box, where you can edit the model inputs (names, symbols,
and ranges).

[NEWTESTPLAN, OK] = InputSetupDialog(OLDTESTPLAN) opens the
Input Setup dialog box, where you can edit the test plan inputs (names,
symbols, and ranges).

If you click Cancel to dismiss the dialog box, OK = false and NEWMODEL
= OLDMODEL. If you click OK to close the dialog box, then OK = true and
NEWMODEL is your new chosen model setup. The new model is refitted
when you click OK.

2-66

InputSignalNames

Purpose Names of signals in data that are being modeled

Syntax inputs = get(A, 'InputSignalNames')

Description This is a property of mbcmodel.testplan and the modeling objects
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

A can be a test plan (T) or model (L, R, HR) object.

Examples inputs = get(T, 'InputSignalNames');
InputFactors = get(thisRF, 'InputSignalNames');

See Also SignalNames

2-67

InputsPerLevel

Purpose Number of inputs at each level in model

Syntax L = get(T, 'InputsPerLevel')

Description This is a property of mbcmodel.testplan.

This is a vector of length Levels. Each element defines the number
of inputs at that level. See “Understanding Model Structure” for an
explanation of the levels in a test plan.

Examples L = get(T, 'InputsPerLevel')
L =

2 4

This answer means the test plan T has 2 local inputs and 4 global inputs.

See Also Levels, Level

2-68

IsAlternative

Purpose Test alternative fit algorithm

Syntax OK = IsAlternative(F1, F2)

Description This is a method of mbcmodel.fitalgorithm.

OK = IsAlternative(F1, F2) tests whether F is an alternative
mbcmodel.fitalgorithm for F1.

See Also CreateAlgorithm, getAlternativeNames

2-69

IsBeingEdited

Purpose Boolean signaling if data or model is being edited

Syntax OK = get(D, 'IsBeingEdited')

Description This is a property of mbcmodel.data and mbcmodel.model.

This Boolean property indicates that the data or model is currently
being edited.

For data, it also indicates that previously there was a successful call to
BeginEdit and hence that whatever changes have been applied can be
undone by calling RollbackEdit. It does not indicate that a call to
CommitEdit will necessarily succeed. See CommitEdit for an example
of this case.

Examples OK = get(D, 'IsBeingEdited');

OK = get(knot, 'IsBeingEdited');

See Also BeginEdit, IsEditable, CommitEdit, RollbackEdit

2-70

IsEditable

Purpose Boolean signaling whether data is editable

Syntax OK = get(d, 'IsEditable')

Description This is a property of mbcmodel.data.

This Boolean property indicates if a particular piece of data is editable.
The following rules apply

• If the data was created using mbcmodel.CreateData and was not
Attached to a test plan it is editable.

• If the data was created or retrieved from the project and was not
Attached to a test plan it is editable.

• If the data was Attached to a test plan and was subsequently
retrieved from that test plan it is editable.

Examples D = get(p, `Data');
D1 = get(p, `Data');
BeginEdit(D1);
tp = get(p, `Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

At this point get(D1, 'IsEditable') becomes false because D1 is now
Attached to the test plan and hence can only be modified from the test
plan. If you now enter:

OK = get(D1, 'IsEditable')

the answer is false.

See Also BeginEdit, IsBeingEdited, CommitEdit, RollbackEdit

2-71

Jacobian

Purpose Calculate Jacobian matrix for model at existing or new X points

Syntax J = Jacobian(model, optional X)

Description This is a method of mbcmodel.model.

This calculates the Jacobian matrix for the model at existing or new
X points. If X is not specified then the existing XData is used. The
Jacobian is the regression matrix for linear models and RBF models.

The Jacobian matrix (for linear and RBF models) is the same as the
Regression Matix in the Design Evaluation Tool GUI. These matrices
only include the terms currently selected in the model.

If all terms are included (none removed by Stepwise) then the Jacobian
(for linear and RBF models) is the same as the Full FX matrix found in
the Design Evaluation Tool GUI. The Jacobian matrix only includes the
currently selected model terms.

To determine the condition number, use the MATLAB command
cond(J).

Examples J = Jacobian(knot),

See Also XData

2-72

Level

Purpose Level in test plan of response

Syntax level = get(R, 'Level')

Description This is a property for all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R is the response for which you want the level.

The level is usually 0 for hierarchical models, usually 1 for local models,
and usually 2 or 1 for response models. See “Understanding Model
Structure” for an explanation of what Level indicates about a response.

Examples level = get(R, 'Level');

See Also Levels

2-73

Levels

Purpose Number of levels in hierarchical model

Syntax levels = get(T, 'Levels')

Description This is a property of mbcmodel.testplan.

See “Understanding Model Structure” for an explanation of what
Levels mean.

Examples levels = get(T, 'Levels');

See Also Level

2-74

Load

Purpose Load existing project file

Syntax P = Load(P, Filename)

Description This is a method of mbcmodel.project.

P is a project object, and Filename is the full path to the project you
want to load.

Examples P2 = Load(P2, 'D:/MBCwork/TQproject2.mat');

See Also New

2-75

LoadProject

Purpose Load a mbcmodel.project

Syntax P = MBCMODEL.LOADPROJECT(FILENAME)

Description P = mbcmodel.LoadProject(FILENAME) loads a mbcmodel.project
from the file FILENAME.

Examples

See Also CreateProject, Load

2-76

LocalResponses

Purpose Array of local responses for response

Syntax local = get(R, 'LocalResponses')

Description This is a property of the mbcmodel.hierarchicalresponse object.

It returns the local model response objects that belong to the
hierarchical response R.

See “Understanding Model Structure” for an explanation of the
relationship between the different response types.

Examples local = get(TQ_response, 'LocalResponses');

2-77

MakeHierarchicalResponse

Purpose Build two-stage model from response feature models

Syntax OK = MakeHierarchicalResponse(L,MLE)

Description This is a method of mbcmodel.localresponse, that builds a two-stage
model from the response feature models and optionally runs MLE
(Maximum Likelihood Estimation).

This performs a similar function to ChooseAsBest for response
models. You can call MakeHierarchicalResponse directly, or
indirectly by calling CreateAlternativeModels for a local
model. If you call CreateAlternativeModels for a local model,
MakeHierarchicalResponse will be called automatically.

An error will be thrown if the local and response models are not ready
to calculate a two-stage model. This can be the case if you have created
alternative models and not chosen the best. A sufficient number of
response features models to calculate the two-stage model must be
selected.

L is the local model object

MLE can be true or false. If true, MLE will be calculated.

Examples OK = MakeHierarchicalResponse(L, true)

See Also ChooseAsBest

2-78

Model

Purpose Model object within response object

Syntax M = get(R, 'Model')

Description This is a property of all mbcmodel.response objects.

Each response contains a model object (mbcmodel.model) that can be
extracted and manipulated independently of the project.

Extract a model object from any response object (see Response), and
then:

• Fit to new data (Fit).

• Change model type, properties, and fit algorithm settings
(ModelSetup, Type; Properties, CreateAlgorithm).

• Create a copy of the model with the same inputs (CreateModel).

• Include and exclude terms to improve the model
(StepwiseRegression).

• Examine coefficient values, predicted values, and regression matrices
(ParameterStatistics; PredictedValue; Jacobian).

• If you change the model you need to use UpdateResponse to replace
the new model back into the response object in the project. When you
use UpdateResponse the new model is fitted to the response data.

Examples knot = get(AlternativeResponses(1), 'Model')

2-79

ModelSetup

Purpose Open Model Setup dialog box where you can alter model type

Syntax [newModel, OK] = ModelSetup(oldModel)

Description This is a method of mbcmodel.model objects.

This method opens the Model Setup dialog box where you can choose
new model types and settings. If you click Cancel to dismiss the dialog,
OK = false and newModel = oldModel. If you click OK to close the
dialog box, then OK = true and newModel is your new chosen model
setup. Data and response remain the same as oldModel. The new
model is refitted when you click OK.

Call UpdateResponse to put the new model type back into the response.

Examples [RBF, OK] = ModelSetup(Cubic);

See Also UpdateResponse, Fit

2-80

Modified

Purpose Boolean signaling whether project has been modified

Syntax Name = get(P, 'Modified')

Description This is a property of mbcmodel.project.

Examples Name = get(Project, 'Modified');

2-81

ModifyFilter

Purpose Modify user-defined filter in data set

Syntax D = ModifyFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available filters you
wish to modify. Use the property Filters to find the index for each filter.

expr is the input string holding the expression that defines the filter, as
for AddFilter.

Examples ModifyFilter(D, 3, 'AFR < AFR_CALC + 20');

The effect of this filter is to modify filter number 3 to keep all records
where AFR < AFR_CALC + 20.

ModifyFilter(D, 2, 'MyNewFilterFunction(AFR, RPM, TQ, SPK)');

This modifies filter number 2 to apply the function
MyNewFilterFunction.

See Also AddFilter, RemoveFilter, Filters

2-82

ModifyTestFilter

Purpose Modify user-defined test filter in data set

Syntax D = ModifyTestFilter(D, Index, expr)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
filters.

D is a data object.

Index is the input index to indicate which of the available test filters
you wish to modify. Use the property TestFilters to find the index
for each test filter.

expr is the input string holding the expression that defines the test
filter, as for AddTestFilter.

Examples ModifyTestFilter(d1, 2, 'any(n>2000)');

The effect of this is to modify test filter number 2 to include all tests in
which any records have speed (n) greater than 1000.

See Also AddTestFilter, RemoveTestFilter, TestFilters

2-83

ModifyVariable

Purpose Modify user-defined variable in data set

Syntax D = ModifyVariable(D, Index, expr, units)

Description This is a method of mbcmodel.data.

You call this method to modify the expression that defines existing
variables.

D is a data object.

Index is the input index to indicate which of the available variables
you wish to modify. Use the property UserVariables to find the index
for each variable.

expr is the input string holding the expression that defines the variable,
as for AddVariable

units is an optional input string holding the units of the variable

Examples ModifyVariable(D, 2, 'MY_NEW_VARIABLE = TQ*AFR/2');

See Also AddVariable, RemoveVariable, UserVariables

2-84

MultipleVIF

Purpose Multiple VIF matrix for linear model parameters

Syntax VIF = MultipleVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

VIF = MultipleVIF(LINEARMODEL) calculates the multiple Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = MultipleVIF(knot_model)

See Also ParameterStatistics

2-85

Name

Purpose Name of project, data, test plan, or model

Syntax name = get(A, 'Name')

Description This is a property of project, data, test plan, and response objects.

‘A’ can be any test plan (T), data (D), project (P) or model (L, R, HR) object.

You can change the names of these objects (except data objects) as
follows:

set(A, `Name', newName)

For response (output or Y data) signal names, see ResponseSignalName.

For model parameter names, see Names, and for model object input
names, see XDataNames.

For testplan and response object input names, see InputSignalNames,
and for data objects, see SignalNames.

Examples ResponseFeatureName = get(thisRF, 'Name');

See Also Names, InputSignalNames, SignalNames, XDataNames,
ResponseSignalName

2-86

Names

Purpose Model parameter names

Syntax N = get (params, 'Names')

Description This is a property of mbcmodel.modelparameters. It returns the names
of all the parameters in the model. These are read-only.

Examples N = get(paramsknot, 'Names')
N =
'1'
'N'
'N^2'
'N*L'
'N*A'
'L'
'L^2'
'L*A'
'A'
'A^2';

See Also NumberOfParameters, Values, Name

2-87

New

Purpose Create new project file

Syntax P = New(P)

Description This is a method of mbcmodel.project. Use this to modify a project
object to make a new project from scratch. Note the current project gets
removed from memory when you open a new one.

P is the new project object.

Examples New(P);

See Also Load

2-88

NumberOfInputs

Purpose Number of model inputs

Syntax N = get(model, 'NumberOfInputs')

Description This is a property of mbcmodel.model. It returns the number of inputs
to the model.

Examples N = get(knot, 'NumberOfInputs');

See Also XData

2-89

NumberOfParameters

Purpose Number of included model parameters

Syntax N = get (knotparams, 'NumberOfParameters')

Description This is a read-only property of mbcmodel.linearmodelparameters, for
linear models only.

The number returned is the number of parameters currently in the
model (you can remove some parameters by using StepwiseRegression).
To see which parameters are currently in the model, use
StepwiseSelection. Only parameters listed as ’in’ are currently
included.

To see the the total possible number of parameters in a linear model,
use SizeOfParameterSet.

Use Names and Values to get the parameter names and values.

Examples N = get(knotparams, 'NumberOfParameters');

See Also SizeOfParameterSet, StepwiseSelection, StepwiseRegression,
Names, Values

2-90

NumberOfRecords

Purpose Total number of records in data object

Syntax get(D, 'NumberOfRecords')

Description This is a property of data objects: mbcmodel.data.

Examples numRecords = get(Data, 'NumberOfRecords');

2-91

NumberOfTests

Purpose Total number of tests being used in model

Syntax numtests = get(A,'NumberOfTests')

Description This is a property of all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response, and data objects mbcmodel.data. ’A’ can be any
model or data object.

Examples numTests = get(TQ_response, 'NumberOfTests');

See Also DefineTestGroups

2-92

OutlierIndices

Purpose Indices of DoubleInputData marked as outliers

Syntax indices = OutlierIndices(R)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse and mbcmodel.response.

Examples ind = OutlierIndices(R);
bad = OutlierIndices(thisRF);

See Also DoubleInputData

2-93

OutlierIndicesForTest

Purpose Indices marked as outliers for test

Syntax indices = OutlierIndicesForTest(R, TestNumber)

Description This is a method of the local model object, mbcmodel.localresponse.

This shows the current records discarded as outliers.

You can use ’:’ to use all tests.

Examples ind = OutlierIndicesForTest(R, ':');
bad = OutlierIndicesForTest(local, tn);

See Also OutlierIndices

2-94

OutputData

Purpose Output (or response) data for model

Syntax D = M.OutputData

Description This is a property of mbcmodel.model.

It returns an array of the response data currently in the model.

Examples D = knot.OutputData;

See Also InputData

2-95

Owner

Purpose Object from which data was received

Syntax O = get(D1, 'Owner')

Description This is a property of mbcmodel.data.

• This is empty if the data was created using mbcmodel.CreateData

• This is an mbcmodel.project object if the data was extracted from a
project

• This is an mbcmodel.testplan object if the data was extracted from
a test plan

Examples O = get(D1, 'Owner');

2-96

Parameters

Purpose Model parameters

Syntax P = get(model, 'Parameters')

Description This is a property of mbcmodel.model., that contains an object
mbcmodel.modelparameters. This object contains a number of
read-only parameters that describe the model.

All models have these properties:

• SizeOfParameterSet

• Names

• Values

Linear models also have these properties:

• StepwiseStatus

• NumberOfParameters

• StepwiseSelection

Radial Basis Function (RBF) models have all the above properties and
these additional properties:

• Centers

• Widths

Examples P = get(knot, 'Parameters');

See Also SizeOfParameterSet, Names, Values, StepwiseStatus,
NumberOfParameters, StepwiseSelection, Centers, Widths

2-97

ParameterStatistics

Purpose Calculate parameter statistics for linear model

Syntax values = ParameterStatistics(linearmodel, optional statType)

Description This is a method of mbcmodel.model, for linear models only. This
calculates parameter statistics for the linear model. If you don’t specify
statType, then a structure with all valid types is output. statType
may be a string specifying a particular statistic or a cell array of string
specifying a number of statistics to output. If statType is a string, then
values is an array of doubles. If statType is a cell array of strings,
then values is a cell array of array of doubles.

The valid types are:

’Alias’

’Covariance’

’Correlation’

’VIFsingle’

’VIFmultiple’

’VIFpartial’

’Stepwise’

These types (except Stepwise) appear in the Design Evaluation tool; see
the documentation for this tool for details of these matrices.

The Stepwise field contains the values found in the Stepwise table. In
this array (and in the Stepwise GUI) you can see for each parameter
in the model: the value of the coefficient, the standard error of the
coefficient, the t value and Next PRESS (the value of PRESS if
the status of this term is changed at the next iteration). See the
documentation for the Stepwise table. You can also see these Stepwise
values when you use StepwiseRegression.

Examples values = ParameterStatistics(knot)
values =

2-98

ParameterStatistics

Alias: [7x3 double]
Covariance: [7x7 double]

Correlation: [7x7 double]
VIFsingle: [5x5 double]

VIFmultiple: [7x1 double]
VIFpartial: [5x5 double]

Stepwise: [10x4 double]

values.Stepwise
ans =

1.0e+003 *
0.0190 0.0079 0.0210 NaN
0.0000 0.0000 0.0210 1.9801
0.0000 0.0000 0.0200 0.2984

-0.0000 0.0000 0.0200 0.2768
0.0000 0.0000 0.0200 0.2890

-0.0526 0.0367 0.0210 0.2679
0.0911 0.0279 0.0210 0.3837

-0.0041 0.0024 0.0210 0.2728
-0.0178 0.0095 0.0200 0.2460
0.0001 0.0000 0.0210 0.3246

See Also StepwiseRegression

2-99

PartialVIF

Purpose Partial VIF matrix for linear model parameters

Syntax STATS = PartialVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

STATS = PartialVIF(LINEARMODEL) calculates the partial Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = PartialVIF(knot_model)

See Also ParameterStatistics

2-100

PEV

Purpose Predicted error variance of model at specified inputs

Syntax pev = PEV(R, X)

Description This is a method of the hierarchical, local response, response, and model
objects: mbcmodel.hierarchicalresponse, mbcmodel.response, and
mbcmodel.model.

R is the model object, and X is the array of input values where you want
to evaluate the PEV of the model. For a local response, the predicted
value uses the hierarchical model.

Note that for an mbcmodel.model and mbcmodel.response objects only,
the X is optional. That is, the syntax is:

PEV = PEV(model, optional X)

This calculates the Predicated Error Variance at X. If X is not specified,
then X is the existing input values. An array is returned of PEV values
evaluated at each data point.

Examples pev = PEV(R, X);

See Also PEVForTest

2-101

PEVForTest

Purpose Local model predicted error variance for test

Syntax pev = PEVforTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is the local model object.

TestNumber is the test for which you want to evaluate the model PEV.

X is the array of inputs where you want to evaluate the PEV of the
model.

Examples pev = PEVforTest(L, TestNumber, X);

See Also PEV

2-102

PredictedValue

Purpose Predicted value of model at specified inputs

Syntax y = PredictedValue(R,X)
y = PredictedValue(R)

Description This is a method of the hierarchical, response, local response, and
model objects: mbcmodel.hierarchicalresponse, mbcmodel.response,
mbcmodel.localresponse, and mbcmodel.model.

y = PredictedValue(R,X) evaluates the model at the specified inputs,
where R is the model object, and X is the array of inputs where you want
to evaluate the output of the model.

Note that for an mbcmodel.model, mbcmodel.localresponse and
mbcmodel.response objects, the X is optional. If X is not specified then
the X is the existing input values. That is, the syntax is:

y = PredictedValue(model, optional X)

y = PredictedValue(R) calculates the predicted value at the fit
data. An array is returned of predicted values evaluated at each data
point. For local models, this is equivalent to y= PredictedValue(L,
L.InputData)

Note that you cannot evaluate model output for a local response
or hierarchical response until you have constructed it using
MakeHierarchicalResponse (or CreateAlternativeModels). If you
have created alternative response feature models then a best model
must be selected. If you have made changes such as removing outliers
since choosing a model as best, you may need to choose a new best
model. For a local response, the predicted value uses the hierarchical
model. If no data is specified then the data from all tests is used.

Examples y = PredictedValue(R, X);
modelPred = PredictedValue(thisRF, x);

See Also PredictedValueForTest, ChooseAsBest, PEV, Evaluate

2-103

PredictedValueForTest

Purpose Predicted local model response for test

Syntax y = PredictedValueForTest(L, TestNumber, X)

Description This is a method of the local model object, mbcmodel.localresponse.

L is a local model object.

TestNumber is the test for which you want to evaluate the model

X is the array of inputs where you want to evaluate the output of the
model.

Examples y = PredictedValueForTest(L, TestNumber, X);

See Also PredictedValue

2-104

Properties

Purpose View and edit model properties

Syntax properties=M.Properties
M.Properties.PropertyName = NewValue
M.Properties.properties
f=M.Properties.properties

Description “Properties” is a property of mbcmodel.model

properties=M.Properties returns a mbcmodel.modelproperties
object.

To edit a property, use the syntax M.Properties.PropertyName =
NewValue

“properties” is a method of mbcmodel.fitalgorithm and
mbcmodel.modelproperties which returns a list of properties.

M.Properties.properties lists the property names, types and allowed
values.

f=M.Properties.properties returns the property names as a cell
array.

The model Type determines which properties you can set (see).

To get a mbcmodel.modelproperties object from a model:

>> M = mbcmodel.CreateModel('Polynomial', 4);
>> disp(M)
mbcmodel.linearmodel:Polynomial

>>modelproperties=M.Properties

modelproperties =
Polynomial Properties

Order: [3 3 3 3]
InteractionOrder: 3

TransformInputRange: 1
ParameterNames: {35x1 cell}

2-105

Properties

StepwiseStatus: {35x1 cell}
BoxCox: 1

To create a model and list the properties:

>> M = mbcmodel.CreateModel('RBF',2)

M =

A radial basis function network using a multiquadric kernel
with 0 centers

and a global width of 2.
The regularization parameter, lambda, is 0.0001.
InputData: [0x2 double]
OutputData: [0x1 double]
Status: Not fitted
Linked to Response: <not linked>

>> M.Properties.properties
RBF Properties

Kernel: RBF kernel (enum: {'multiquadric','recmultiquadric',
'gaussian','thinplate','logisticrbf','wendland',
'linearrbf','cubicrbf'})

Continuity: Continuity for Wendland kernel (0,2,4,6,8) (int: [0,8
ParameterNames: List of parameter names (read-only)
StepwiseStatus: Stepwise status {'Always','Never','Step'} (cell)
BoxCox: Box-Cox transform (power) (numeric: [-3,3])

The following syntax returns the properties as a cell array:

>> f=M.Properties.properties

f =

'Kernel'
'Continuity'
'ParameterNames'
'StepwiseStatus'

2-106

Properties

'BoxCox'

Change a property as follows:

>>M.Properties.Kernel = 'thinplate';

The model changes state to ‘Being Edited’. The settings are not applied
until you call Fit on the model object.

The following sections list the properties available for each model type.

Linear Models — Polynomial Properties

mbcmodel.linearmodel:Polynomial

Order: Polynomial order (vector int: {[0,Inf],2})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

TransformInputRange: Transform inputs (Boolean)

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline Properties

mbcmodel.linearmodel:Hybrid Spline

Order: Spline and polynomial order (vector int: {[0,3],2})

SplineVariable: Spline variable

SplineInteraction: Order of interaction between spline and polynomial
(int: [0,3])

Knots: Position of knots (vector real)

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

2-107

Properties

Linear Models — RBF Properties

mbcmodel.linearmodel:RBF

Kernel: RBF kernel (enum:
{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf ’,’wendland’,

’linearrbf ’,’cubicrbf ’})

Continuity: Continuity for Wendland kernel (0,2,4,6,8) (int: [0,8])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Polynomial-RBF Properties

mbcmodel.linearmodel:Polynomial-RBF

Order: Polynomial order (vector int: {[0,Inf],2})

InteractionOrder: Maximum order of interaction terms (int: [0,Inf])

Kernel: RBF kernel (enum:

{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf ’,’wendland’,

’linearrbf ’,’cubicrbf ’})

Continuity: Continuity for Wendland kernel (0,2,4,6,8) (int: [0,8])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Linear Models — Hybrid Spline-RBF Properties

mbcmodel.linearmodel:Hybrid Spline-RBF

Order: Spline and polynomial order (vector int: {[0,3],2})

SplineVariable: Spline variable

2-108

Properties

SplineInteraction: Order of interaction between spline and polynomial
(int: [0,3])

Knots: Position of knots (vector real)

Kernel: RBF kernel (enum:
{’multiquadric’,’recmultiquadric’,’gaussian’,’thinplate’,’logisticrbf ’,’wendland’,

’linearrbf ’,’cubicrbf ’})

Continuity: Continuity for Wendland kernel (0,2,4,6,8) (int: [0,8])

ParameterNames: List of parameter names (read-only)

StepwiseStatus: Stepwise status {’Always’,’Never’,’Step’} (cell)

BoxCox: Box-Cox transform (power) (numeric: [-3,3])

Nonlinear Models — Free Knot Spline Properties

mbcmodel.model:Free Knot Spline

Order: Spline order (int: [0,3])

NumKnots: Number of knots (int: ’Positive’)

Nonlinear Models — Neural Network Properties

mbcmodel.model:Neural Network

HiddenLayers: Number of hidden layers (int: [1,2])

Neurons: Number of Neurons in each hidden layer (vector int: ’Positive’)

Examples >> properties=M.Properties

properties =
Polynomial Properties

Order: [3 3 3 3]
InteractionOrder: 3

TransformInputRange: 1
ParameterNames: {35x1 cell}
StepwiseStatus: {35x1 cell}

BoxCox: 1

2-109

Properties

>> M.Properties.Order = [3 2 2 3]

M =

1 + 2*X1 + 10*X4 + 15*X2 + 18*X3 + 3*X1^2 + 6*X1*X4
...+ 8*X1*X2 + 9*X1*X3 +

11*X4^2 + 13*X4*X2 + 14*X4*X3 + 16*X2^2 + 17*X2*X3
...+ 19*X3^2 + 4*X1^3 +

5*X1^2*X4 + 7*X1*X4^2 + 12*X4^3
InputData: [0x4 double]
OutputData: [0x1 double]
Status: Being Edited
Linked to Response: <not linked>

See Also Type

2-110

RecordsPerTest

Purpose Number of records in each test

Syntax get(D, 'RecordsPerTest')

Description This is a property of data objects: mbcmodel.data. It returns an array,
of length NumberOfTests, containing the number of records in each test.

Examples numRecords = get(Data, 'RecordsPerTest');

2-111

Remove

Purpose Remove project, test plan, or model

Syntax OK = Remove(A)

Description This is a method of all the non-data objects: projects, test plans and
all models.

A can be any project, test plan or model object.

Datum models cannot be removed if they are in use by other models.

Examples OK = Remove(R3);

2-112

RemoveData

Purpose Remove data from project

Syntax P = RemoveData(P, D)
P = RemoveData(P, Index)

Description This is a method of mbcmodel.project.

You can refer to the data object either by name or index.

P is the project object.

D is the data object you want to remove.

Index is the index of the data object you want to remove.

Examples RemoveData(P, D);

See Also CreateData, Data, CopyData

2-113

RemoveFilter

Purpose Remove user-defined filter from data set

Syntax D = RemoveFilter(D, Index)

Description This is a method of the mbcmodel.data object.

Index is the input index indicating the filter to remove. Use the
property Filters to find out which filters are present.

Examples RemoveFilter(D1, 3);

See Also AddFilter, Filters

2-114

RemoveOutliers

Purpose Remove outliers in input data by index or rule, and refit models

Syntax R = RemoveOutliers(R, Selection);
R = RemoveOutliers(L, LocalSelection, GlobalSelection)

Description This is a method of the local model object, mbcmodel.localresponse
and the response feature model object mbcmodel.response.

All the response feature models are refitted after the local models are
refitted. Outlier selection is applied to all tests.

For a response model:

• R is a response object

• Selection specifies either a set of indices or the name of an outlier
selection function, of the following form:

Indices = myMfile(model, data, factorName)

The factors are the same as defined in DiagnosticStatistics

• data contains the factors as columns of a matrix

• factorNames is a cell array of the names for each factor

For a local model:

• LocalSelection is the local outlier selection indices or function

• GlobalSelection is the global outlier selection indices or function

Outlier selection functions must conform to this prototype:

Indices = myMfile(model, data, factorName)

The factors are the same as appear in the scatter plot in the Model
Browser.

• data contains the factors as columns of a matrix

2-115

RemoveOutliers

• factorNames is a cell array of the names for each factor

Examples outlierind = [1 4 6 7];
RemoveOutliers(thisRF, outlierind);

See Also RemoveOutliersForTest

2-116

RemoveOutliersForTest

Purpose Remove outliers on test by index or rule and refit models

Syntax L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION)

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION, doUpdate)

Description This is a method of mbcmodel.localresponse.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION) removes outliers, refits the local model, and refits the
response feature models.

L = RemoveOutliersForTest(LOCALRESPONSE, TESTNUMBER,
LOCALSELECTION, doUpdate) removes outliers and if doUpdate is true,
refits all response features after the local model is refitted.

TESTNUMBER is the single test number to refit.

LOCALSELECTION can either be a set of indices or a function name.

An outlier selection function must take the following form:

INDICES = MYMFILE(MODEL, DATA, FACTORNAME);

The factors are the same as defined in DiagnosticStatistics.

DATA contains the factors as columns of a matrix, and FACTORNAME is a
cell array of the names for each factor.

Examples For a local response LOCALRESPONSE, to remove first two data points and
do not update response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

2-117

RemoveOutliersForTest

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also UpdateResponseFeatures, RestoreDataForTest,
OutlierIndicesForTest, RemoveOutliers

2-118

RemoveTestFilter

Purpose Remove user-defined test filter from data set

Syntax D = RemoveTestFilter(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the filter to remove.

Use the property TestFilters to find the index of the test filter you
want to remove.

Examples RemoveTestFilter(D1, 2);

See Also AddTestFilter, TestFilters

2-119

RemoveVariable

Purpose Remove user-defined variable from data set

Syntax D = RemoveVariable(D, Index)

Description This is a method of mbcmodel.data.

D is the data object.

Index is the input index indicating the variable to remove.

Use UserVariables to find the index of the variable you want to remove.

Examples RemoveVariable(D1, 2);

See Also AddVariable, UserVariables

2-120

Response

Purpose Response for model object

Syntax R = get(model, 'Response')

Description This is a property of mbcmodel.model. It returns the response the
model object came from (e.g. a response object).

If you make changes to the model object (for example by changing the
model type using ModelSetup, or using StepwiseRegression) you must
use UpdateResponse to return the new model object to the response in
the project.

Examples R = get(knot, 'Response');

See Also UpdateResponse, ModelSetup

2-121

ResponseFeatures

Purpose Array of response features for response

Syntax RFs = get(L, 'ResponseFeatures')

Description This is a property of the local model object, mbcmodel.localresponse.

L is the local response.

See “Understanding Model Structure” in the Getting Started
documentation for an explanation of the relationships between local
responses and other responses.

Examples RFs = get(local, 'ResponseFeatures');

2-122

ResponseSignalName

Purpose Name of signal or response feature being modeled

Syntax ysignal = get(R, 'ResponseSignalName')

Description This is a property of all model objects:
mbcmodel.hierarchicalresponse, mbcmodel.localresponse and
mbcmodel.response.

R can be a hierarchical response, local response or response.

Examples yName = get(local, 'ResponseSignalName');

See Also InputSignalNames

2-123

Responses

Purpose Array of available responses for test plan

Syntax R = get(T, 'Responses')

Description This is a property of mbcmodel.testplan.

T is the test plan object.

See “Understanding Model Structure” for an explanation of the
relationship between test plans and responses.

Examples R = get(T, 'Responses');

2-124

RestoreData

Purpose Restore removed outliers

Syntax R = RestoreData(RESPONSE)
R = RestoreData(RESPONSE, OUTLIERINDICES)

Description This is a method of mbcmodel.localresponse and mbcmodel.response.

R = RestoreData(RESPONSE) restores all data previously removed as
outliers.

R = RestoreData(RESPONSE, OUTLIERINDICES) restores all removed
data specified in OutlierIndices. For a local response, the indices
refer to record numbers for all tests.

Examples RemoveOutliers(R, 1:5)
RestoreData(R, 1:2)

See Also RemoveOutliersForTest, RemoveOutliers, OutlierIndices

2-125

RestoreDataForTest

Purpose Restore removed outliers for test

Syntax L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices)
L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices,

doUpdate)

Description This is a method of mbcmodel.localresponse.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices)
restores all removed data for TESTNUMBER specified in Indices.

L = RestoreDataForTest(LOCALRESPONSE, TESTNUMBER, Indices,
doUpdate) restores all specified removed data and if doUpdate is true,
refits all response features. By default, all response feature models will
be updated. If a number of tests are being screened it is more efficient
to set doUpdate to false and call UpdateResponseFeatures when all
the tests have been screened.

Indices must be numbers and must belong to the set of outliers in
OutliersForTest.

Examples For a local response LOCALRESPONSE, to remove first two data points
without updating response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To find list of indices of removed data points:

indices = OutliersForTest(LOCALRESPONSE,1);

To restore first data point:

RestoreDataForTest(LOCALRESPONSE,1,1,false);

To restore all data:

RestoreDataForTest(LOCALRESPONSE,1,':',false);

To update response features:

2-126

RestoreDataForTest

UpdateResponseFeatures(LOCALRESPONSE);

See Also UpdateResponseFeatures, RemoveOutliersForTest,
OutlierIndicesForTest

2-127

RollbackEdit

Purpose Undo most recent changes to data

Syntax D = RollbackEdit(D)

Description This is a method of mbcmodel.data. Use this if you change your mind
about changes you have made to the data since you called BeginEdit,
such as importing or appending data, applying filters or creating new
user variables.

There are no input arguments. If for your data object D, IsBeingEdited
is true, then RollbackEdit will return it to the same state as it was
when BeginEdit was called. If IsEditable(D) is true then you can still
modify it, if not it will revert to being read-only. See the example below.

Examples D = get(P, 'Data');
BeginEdit(D);
AddVariable(D, 'TQ = tq', 'lbft');
AddFilter(D, 'TQ < 200');
DefineTestGroups(D, {'RPM' 'AFR'}, [50 10], 'MyLogNo');
RollbackEdit(D);

This returns the data object D to the same state as when BeginEdit was
called. If the data object IsEditable then the returned object will still
return true for IsBeingEdited, else it will not be editable.

For an example case where IsEditable is false and IsBeingEdited
is true:

D = get(p, 'Data');
D1 = get(p, 'Data');
BeginEdit(D1);
tp = get(p, 'Testplan');
Attach(tp, D);

Where p is an mbcmodel.project object, and D and D1 are
mbcmodel.data objects.

2-128

RollbackEdit

At this point IsEditable for D1 becomes false because it is now
Attached to the test plan and hence can only be modified from the test
plan. However

OK = get(D1, 'IsBeingEdited')

will still be true at this point, and trying to call CommitEdit will fail.

See Also BeginEdit, CommitEdit, IsBeingEdited

2-129

Save

Purpose Save project to currently selected filename

Syntax OK = Save(P, Name)

Description This is a method of mbcmodel.project.

Examples OK = Save(proj, 'Example.mat');

See Also SaveAs

2-130

SaveAs

Purpose Save project to new file

Syntax OK = SaveAs(P, Name)

Description This is a method of mbcmodel.project.

Examples OK = SaveAs(proj, 'Example.mat');

See Also Save

2-131

SetTermStatus

Purpose Set status of model terms

Syntax M.Properties = M.Properties.SetTermStatus(Terms, Status)

Description This is a method of mbcmodel.linearmodelproperties.

M.Properties = M.Properties.SetTermStatus(Terms, Status) sets
the status of the specified terms in this model. Status must be a cell
array of status strings.

The stepwise status for each term can be Always, Never or Step.
The status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

M is an mbcmodel.linearmodel object.

Examples M = mbcmodel.CreateModel('Polynomial', 2);
M.Properties = M.Properties.SetTermStatus([1 2; 1 0],
{'Never', 'Always'});

This example sets the status of the X1*X2^2 term to Never and the
X1 term to Always.

See Also GetTermStatus, StepwiseStatus

2-132

SetupDialog

Purpose Open fit algorithm setup dialog box

Syntax [OPT,OK]= SetupDialog(F)

Description This is a method of mbcmodel.fitalgorithm.

[OPT,OK]= SetupDialog(F) opens the fit algorithm setup
dialog box, where you can edit the algorithm parameters. F is a
mbcmodel.fitalgorithm object.

If you click Cancel to dismiss the dialog, OK = false and no changes
are made. If you click OK to close the dialog box, then OK = true and
your new chosen algorithm parameters are set up.

Examples

See Also CreateAlgorithm, getAlternativeNames

2-133

SignalNames

Purpose Names of signals held by data

Syntax names = get (D, 'SignalNames')

Description This is a property of mbcmodel.data.

This is a cell array of strings that hold the names of the signals within
the data. These names can be used to reference the appropriate signals
in the Value method. The subset of these names that are being
used for modeling may also be found in the test plan and responses
InputSignalNames properties.

Examples names = get(D, 'SignalNames');

See Also SignalUnits, InputSignalNames, Value

2-134

SignalUnits

Purpose Names of units in data

Syntax units = get(D, 'SignalUnits')

Description This is a property of mbcmodel.data.

D is the data object.

It returns a cell array of strings holding the units of the signals.

Examples units = get(D, 'SignalUnits');

See Also SignalNames

2-135

SingleVIF

Purpose Single VIF matrix for linear model parameters

Syntax VIF = SingleVIF(LINEARMODEL)

Description This is a method of mbcmodel.linearmodel.

VIF = SingleVIF(LINEARMODEL) calculates the single Variance
Inflation Factor (VIF) matrix for the linear model parameters.

Examples VIF = SingleVIF(knot_model)

See Also ParameterStatistics

2-136

SizeOfParameterSet

Purpose Number of model parameters

Syntax N = get (params, 'SizeOfParameterSet')

Description This is a property of mbcmodel.linearmodelparameters, for linear
models only. It returns the total possible number of parameters
in the model. Note that not all of these terms are necessarily
currently included in the model, as you may remove some using
StepwiseRegression.

Call NumberOfParameters to see how many terms are currently
included in the model. Call StepwiseSelection to see which terms are
included and excluded.

Use Names and Values to get the parameter names and values.

Examples N = get(knotparams, 'SizeOfParameterSet')

See Also NumberOfParameters, StepwiseSelection, Names, Values

2-137

StatisticsDialog

Purpose Open summary statistics dialog box

Syntax [mdl,OK]= StatisticsDialog(mdl)

Description This is a method of mbcmodel.model.

[mdl,OK]= StatisticsDialog(mdl) opens the Summary Statistics
dialog box, where you can select the summary statistics you want to use.

If you click Cancel to dismiss the dialog, OK = false and no changes
are made. If you click OK to close the dialog box, then OK = true and
your new chosen summary statistics are set up.

See Also SummaryStatistics

2-138

Status

Purpose Model status: fitted, not fitted or best

Syntax S = get(model, 'Status')

Description This is a property of mbcmodel.model. It returns a string: ‘Fitted' if
the model is fitted, ‘Not fitted' if the model is not fitted (for example
there is not enough data to fit the model), or ‘Best' if the model has
been selected as best from some alternative models. A model must be
Fitted before it can be selected as Best.

Examples S = get(knot, 'Status')
S =

`Fitted'

See Also ChooseAsBest

2-139

StepwiseRegression

Purpose Change stepwise selection status for specified terms

Syntax [S, model] = StepwiseRegression(model, optional toggleTerms)

Description This is a method of mbcmodel.model, for linear models only. This
method returns the Stepwise table (as in the Stepwise values for
ParameterStatistics). Leave out toggleTerms to get the current
Stepwise values. You can choose to remove or include parameters using
StepwiseRegression, as long as their StepwiseStatus is Step.

The Stepwise values returned are the same as those found in the table
in the Stepwise GUI. For each parameter, the columns are: the value
of the coefficient, the standard error of the coefficient, the t value and
Next PRESS (the value of PRESS if the status of this term is changed at
the next iteration). Look for the lowest Next PRESS to indicate which
terms to toggle in order to improve the predictive power of the model.

Call StepwiseRegression to toggle between in and out for particular
parameters. toggleTerms can be either an index that specifies which
parameters to toggle, or an array or logical where a true value indicates
that a toggle should occur. The example shown toggles parameter 4,
after inspection of the Next PRESS column indicates changing the
status of this term will result in the lowest PRESS. StepwiseRegression
returns the new Stepwise values after toggling a parameter.

After making changes to the model using StepwiseRegression you must
call UpdateResponse.

Use StepwiseStatus (on the child modelparameters object) to see which
parameters have a status of Step; these can be toggled between in and
out using StepwiseRegression (on the parent model object).

Use StepwiseSelection (on the child modelparameters object) to view
which terms are in and out, as shown in the example.

Examples [S, knot] = StepwiseRegression(knot)
S =

1.0e+003 *

2-140

StepwiseRegression

0.1316 0.0606 0.0200 NaN
0.0000 0.0000 0.0200 2.0919
0.0000 0.0000 0.0190 0.2828

-0.0000 0.0000 0.0190 0.2531
0.0000 0.0000 0.0190 0.2680

-0.0551 0.0347 0.0200 0.2566
0.0919 0.0264 0.0200 0.3672

-0.0040 0.0023 0.0200 0.2564
-0.0178 0.0095 0.0200 0.2644
0.0008 0.0004 0.0200 0.2787

[S, knot] = StepwiseRegression(knot, 4)

S =

129.8406 60.1899 19.0000 NaN
0.0048 0.0008 19.0000 662.3830
0.0000 0.0000 18.0000 290.8862

-0.0021 0.0019 19.0000 245.9833
0.0001 0.0002 18.0000 281.4104

-50.4091 34.7401 19.0000 262.8346
94.9675 26.3690 19.0000 400.6572
-4.0887 2.2488 19.0000 262.6588

-17.9412 9.4611 19.0000 276.7535
0.8229 0.3734 19.0000 292.0827

params = get(knot, 'Parameters');
N = get(params, 'StepwiseSelection')

N =
'in'
'in'
'out'
'in'
'out'
'in'

2-141

StepwiseRegression

'in'
'in'
'in'
'in'

>> StepwiseRegression(knot, 4);
params = get(knot, 'Parameters');
N = get(params, 'StepwiseSelection')

N =
'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseSelection, StepwiseStatus, UpdateResponse

2-142

StepwiseSelection

Purpose Model parameters currently included and excluded

Syntax N = get (paramsknot, 'StepwiseSelection')

Description This is a read-only property of mbcmodel.linearmodelparameters, for
linear models only. It returns a status for each parameter in the model,
in or out, depending on whether the term is included or excluded. You
can choose to remove or include parameters using StepwiseRegression,
as long as their StepwiseStatus is Step. Call StepwiseRegression (on
the parent model object) to toggle between in and out for particular
parameters. You must then call UpdateResponse before calling
StepwiseSelection.

Examples N = get(paramsknot, 'StepwiseSelection')
N =

'in'
'in'
'out'
'out'
'out'
'in'
'in'
'in'
'in'
'in'

See Also StepwiseRegression, StepwiseStatus, NumberOfParameters,
UpdateResponse

2-143

StepwiseStatus

Purpose Stepwise status of parameters in model

Syntax N = get (paramsknot, 'StepwiseStatus')

Description This is a method of mbcmodel.linearmodelparameters, for linear
models only. It returns the stepwise status of each parameter in the
model.

The stepwise status for each term can be Always, Never or Step. The
status determines whether you can use the StepwiseRegression
function to throw away terms in order to try to improve the predictive
power of the model.

• Always - Always included in the model

• Never - Never included in the model

• Step - You can choose whether to include or exclude this term. Do
this by using StepwiseRegression to toggle between in and out for
particular parameters.

Use StepwiseSelection to find out which terms are currently included
and excluded.

Examples N = get(paramsknot, 'StepwiseStatus')
N =

'Always'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'
'Step'

See Also StepwiseRegression, StepwiseSelection

2-144

SummaryStatistics

Purpose Summary statistics for response

Syntax S = SummaryStatistics(R, Name)

Description This is a method of all model objects: mbcmodel.hierarchicalresponse,
mbcmodel.localresponse, mbcmodel.response, and mbcmodel.model.

These are the statistics that appear in the Summary Statistics pane of
the Model Browser GUI.

R is the response object.

S is a structure array containing Statistics and Names fields for the
response R.

Name is an optional input where you can specify which statistics you
want. If you do not use Name all statistics are calculated.

Examples S = SummaryStatistics(R2);

See Also DiagnosticStatistics, AlternativeModelStatistics

2-145

TestFilters

Purpose Structure array holding user-defined test filters

Syntax testf = get (D, 'TestFilters')

Description This is a property of mbcmodel.data.

It returns a structure array holding information about the currently
defined test filters for the data object D. The array will be the same
length as the number of currently defined test filters, with the following
fields for each filter:

• Expression — The string expression as defined in AddTestFilter or
ModifyTestFilter.

• AppliedOK — Boolean indicating that the filter was successfully
applied.

• RemovedTests — Boolean vector indicating which tests the filter
removed. Note that many filters could remove the same test.

• Message — String holding information on the success or otherwise
of the filter.

Examples testf = get(D, 'TestFilters');

See Also AddTestFilter, ModifyTestFilter, RemoveTestFilter

2-146

TestPlans

Purpose Array of test plan objects in project

Syntax tps = get (P, 'TestPlans')

Description This is a property of mbcmodel.project.

P is the project object.

Examples tps = get(P, 'TestPlans');

2-147

Type

Purpose Valid model types

Syntax M = mbcmodel.CreateModel(Type, NUMINPUTS)
M2 = CreateModel(M, Type)

Description This is a property of mbcmodel.model.

The model type must be one of the following:

• Polynomial

• Hybrid Spline

• RBF

• Hybrid RBF

• Polynomial-RBF

• Hybrid Spline-RBF

• Multiple Linear

• Free Knot Spline

• Transient

• User-Defined

• Neural Network

Note Spaces and case in model Type are ignored.

Get a list of types, using getAlternativeTypes, by entering the
following syntax:

Mlist = getAlternativeTypes(M)

where M is an mbcmodel.model object.

2-148

Type

Create an alternative model as follows: M =
mbcmodel.CreateModel(Type, NUMINPUTS) or M2 =
CreateModel(M, Type)

The model Type determines which properties you can set. To set
properties, see Properties.

See Also Properties, getAlternativeTypes, CreateModel

2-149

UpdateResponse

Purpose Replace model in response

Syntax UpdateResponse(model)
M = UpdateResponse(M , R); updates the response specified by R

Description This is a method of mbcmodel.model. This takes the model and places it
back into the response it came from. Appropriate action is taken if a
refit is necessary because you have modified either the model, response
data or model data in the interim. For example, if you have changed
the model type, the new model is fitted to the response data. If you
have changed the response data (e.g. removed an outlier), the model is
fitted to the new response data.

Note that when changing the model type or settings (using the
ModelSetup command) the response is not refitted until you
call UpdateResponse. If you have changed the model by using
StepwiseRegression you must call UpdateResponse.

UpdateResponse(M)

updates the model in the response associated with the model.

M = UpdateResponse(M , R);

updates the response specified by R.

Examples UpdateResponse(knot);

See Also ModelSetup

2-150

UpdateResponseFeatures

Purpose Refit response feature models

Syntax UpdateResponseFeatures(L)

Description This is a method of mbcmodel.localresponse.

UpdateResponseFeatures(L) refits all response feature models. You
need to call this if you used RemoveOutliersForTest without specifying
refitting the response features (doUpdate set to false).

Examples For a local response LOCALRESPONSE, to remove first two data points
without updating response features:

RemoveOutliersForTest(LOCALRESPONSE,1,1:2,false);

To update response features:

UpdateResponseFeatures(LOCALRESPONSE);

See Also RemoveOutliersForTest, RestoreDataForTest

2-151

UserVariables

Purpose Structure array holding user-defined variables

Syntax userV = get(D, 'UserVariables')

Description This is a property of mbcmodel.data.

This returns a structure array holding information about the currently
defined filters. The array will be the same length as the number of
currently defined variables, with fields

• Variable — variable name

- Expression — The string expression as defined in AddVariable
or ModifyVariable

- Units — The string defining the units

- AppliedOK — Boolean indicating that the variable expression was
successfully applied

- Message — String holding information on the success or otherwise
of the variable

Examples myvars = get(D1, 'UserVariables')

This returns the following information about the user-defined variable
in the example data object D1:

Variable: 'BSFC'
Expression: 'BSFC = FUELFLO./(BTQ.*(ENGSPEED*2*pi/60))'

Units: 'kg/Nm'
AppliedOK: 1

Message: 'Variable successfully added'

Variable is the parsed name of the variable being added. Note that
this might differ from the string used in AddVariable because the
SignalName must be a valid MATLAB variable name, and hence MBC
will parse and modify the input string appropriately.

2-152

UserVariables

See Also AddVariable, ModifyVariable, RemoveVariable

2-153

Value

Purpose Double data from data object

Syntax val = Value(D, varNames, testNumbers)

Description This is a method of mbcmodel.data.

Use this to extract particular data values.

varNames is an optional input that specifies either the name of the
signal that you want to extract (such as 'SPK') or an array of names
({'SPK' 'AFR' 'TQ'}) the indices of the signals ([1 4 5]). Defaults to
’:’ meaning all.

testNumbers is an optional input that specifies which test indices you
want. Defaults to ’:’ meaning all.

val outputs the double values held in the data.

Examples dblValues = Value(D, 'SPK', 1);
dblValues = Value(D, {'SPK' 'AFR'}, ':');
dblValues = Value(D, [1 3 4 5]);
dblValues = Value(D, ':', [1 4 6 8]);

See Also SignalNames

2-154

Values

Purpose Values of model parameters

Syntax vals = get (paramsknot, 'Values')

Description This is a read-only property of mbcmodel.modelparameters. It returns
the value of each parameter in the model. Use Names to find out the
names of these terms.

Examples vals = get(paramsknot, 'Values');

See Also Names

2-155

Widths

Purpose Width data from RBF model

Syntax Width = get(params, 'Widths')

Description This is a property of mbcmodel.rbfmodelparameters, for Radial Basis
Function (RBF) models only.

Width is usually a single value, but can also be of size 1 by number of
variables in the case of the width per dimension algorithm, or number
of centers by number of variables in the case of tree regression.

Examples Width = get(params, 'Widths');

See Also Centers

2-156

XData

Purpose X (or input) data for model

Syntax D = get (model, 'XData')

Description This has been replaced by InputData, use this instead.

This is a property of mbcmodel.model. It returns an array of the input
variable data currently in the model.

Examples D = get(knot, 'XData');

See Also InputData, XDataNames, YData

2-157

XDataNames

Purpose X data (or input) variable names for model

Syntax D = get (model, 'XDataNames')

Description This is a property of mbcmodel.model. It returns the names of the input
variables in the data.

Examples D = get(knot, 'XDataNames');

See Also XData

2-158

YData

Purpose Y (or response) data for model

Syntax D = get (model, 'YData')

Description This has been replaced by OutputData, use this instead.

This is a property of mbcmodel.model.

It returns an array of the response data currently in the model.

Examples D = get(knot, 'YData');

See Also OutputData, XData

2-159

	toc
	Commands – By Category
	Functions
	Handling Data
	mbcmodel.data — Properties
	mbcmodel.data — Methods

	Handling Projects
	mbcmodel.project — Properties
	mbcmodel.project — Methods

	Handling Test Plans
	mbcmodel.testplan — Properties
	mbcmodel.testplan — Methods

	Handling Models
	Hierarchical Models
	mbcmodel.hierarchicalresponse — Properties
	mbcmodel.hierarchicalresponse — Methods

	Local Models
	mbcmodel.localresponse — Properties
	mbcmodel.localresponse — Methods

	Response Models
	mbcmodel.response — Properties
	mbcmodel.response — Methods

	Models
	mbcmodel.model — Properties
	mbcmodel.linearmodel — Linear Model Methods
	mbcmodel.model — Methods
	mbcmodel.fitalgorithm — Methods

	Model Parameters
	mbcmodel.modelparameters — Properties
	mbcmodel.linearmodelparameters — Linear Model Properties
	mbcmodel.rbfmodelparameters — RBF Model Properties

	Model Properties
	mbcmodel.linearmodelproperties — Methods

	Commands — Alphabetical List

